Oxidation Behavior of Tantalum Boride Ceramics


Article Preview

The oxidation behavior of tantalum diboride (TaB2) powder at high temperature was investigated in order to determine the possibility of the use of advanced high temperature structural materials. Unfortunately, monolithic TaB2 were known to be chemical stability up to high temperatures. To date, there have been few reports regarding the properties of TaB2 ceramics. The samples were oxidized at room temperature to 1273 K for 5 minutes to 25 hours in air. The weight changes were measured to estimate the oxidation resistance. The oxidation of samples oxidized for short oxidation time of 5 minutes started at 873 K, and the weight gain increased with increasing oxidation temperature. On the other hand, at the oxidation time of above 1 hour, a maximum weight gain value at 973 to 1073 K was observed. However, even if the oxidation temperature was increased an additional weight change slightly occurred. The weight gain of the sample oxidized at 1273 K for 5 minutes to 25 hours was about 40 to 20 % of the theoretical oxidation mass change. According to the powder X-ray diffraction date, the oxidized TaB2 sample was changed to Ta2O5 at 873 K. Finally, the TaB2 showed a good oxidation resistance at high temperature, because the surface film of tantalum oxide (Ta2O5) formed by oxidation acted as an oxidation resistant layer.



Solid State Phenomena (Volumes 124-126)

Edited by:

Byung Tae Ahn, Hyeongtag Jeon, Bo Young Hur, Kibae Kim and Jong Wan Park






J. Matsushita et al., "Oxidation Behavior of Tantalum Boride Ceramics", Solid State Phenomena, Vols. 124-126, pp. 819-822, 2007

Online since:

June 2007




In order to see related information, you need to Login.

In order to see related information, you need to Login.