Influence of the Dislocation Travel Distance on the DLTS Spectra of Dislocations in Cz-Si

Abstract:

Article Preview

We investigated the development of dislocation-related DLTS spectra in n-CZ-Si crystals with small (about 7.104 cm-2) number of long individual dislocations depending on the distance L that dislocations traveled during deformation at 600oC and on the velocity of dislocations. We found that a typical dislocation-related DLTS signal appeared only when dislocations traveled a significant distance that is more than 150-200μm, and it depended strongly on dislocation velocity. The results were interpreted on the assumption that the DLTS signal corresponds to some core defects and atomic impurities accumulated on the dislocations during their slow motion. At high concentration of deep level defects on dislocations a strange “negative DLTS” signal was observed. This can be explained by electron tunneling between deep defects along dislocations.

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Edited by:

A. Cavallini, H. Richter, M. Kittler and S. Pizzini

Pages:

175-182

DOI:

10.4028/www.scientific.net/SSP.131-133.175

Citation:

V. V. Kveder et al., "Influence of the Dislocation Travel Distance on the DLTS Spectra of Dislocations in Cz-Si", Solid State Phenomena, Vols. 131-133, pp. 175-182, 2008

Online since:

October 2007

Export:

Price:

$35.00

[1] V. Kveder, M. Badylevich, W. Schröter, M. Seibt, E. Steinman, A. Izotov: Phys. Stat. Sol. (a), 202 (2005), p.901.

DOI: 10.1002/pssa.200460512

[2] A. Castaldini, D. Cavalcoli, A. Cavallini, S. Pizzini: Phys. Rev. Lett. 95 (2005), p.076401.

[3] M. Kittler, C. Ulhaq-Bouillet, V. Higgs: J. Appl. Phys. 78 (1995), p.4573.

[4] V. Higgs, M. Kittler: Appl. Phys. Lett. 65 (1994), p.2804.

[5] S. Kusanagi, T. Sekiguchi, B. Shen, K. Sumino: Mater. Sci. Technology, 11 (1995), p.685.

[6] M. Kittler, W. Seifert: Mater. Sci. Eng., B24 (1994), 78.

[7] V. Kveder, M. Kittler, W. Schröter, Phys. Rev. B, 63 (2001), p.115208.

[8] J. R. Patel and L. C. Kimerling: J. Physique, 40 (1979), p. C6-67.

[9] V. Kveder, Yu. A. Ossipyan, W. Schröter, G. Zoth: Phys Stat. Sol. (a), 72 (1982), p.701.

[10] P. Omling, E. R. Weber, L. Montelius, H. Alexander, J. Michel: Phys. Rev. B 32, (1985), p.6571.

[11] D. Cavalcoli, A. Cavallini, E. Gombia: Phys. Rev. B, 56 (1997), p.10208.

[12] W. Schröter and H. Cerva: Solid State Phenomena, Vols. 85-86, (2002), pp.67-144.

[13] O.V. Kononchuk, V.I. Nikitenko, V.I. Orlov and E.B. Yakimov: Phys. Stat. Sol. (a), 143 (1994) p. K5.

[14] O.V. Feklisova E.B. Yakimov, N. Yarykin: Physica B 340, (2003), p.1005.

[15] O. V. Feklisova, B. Pichaud, E. B. Yakimov: Phys. Stat. Sol. (a), 202, (2005), p.896.

[16] W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel, M. Seibt: Phys. Rev. B, 52 (1995), p.13726.

DOI: 10.1103/physrevb.52.13726

[17] W. Schröter, V. Kveder, H. Hedemann: Solid State Phenom. 82-84, (2002), p.213.

[18] M. Seibt, V. Kveder, W. Schröter, O. Voß: Phys. Stat. Sol. (a) 202, (2005), p.911.

In order to see related information, you need to Login.