Origination and Properties of Dislocations in Thin Film Nitrides

Abstract:

Article Preview

Epitaxial group-III nitride films, although in single crystalline form, contain still a large number of threading dislocations. These set limits to performance and lifetime of devices, notably to high power structures like lasers. The strategy in material development was and will be (at least until lattice-matched substrates become available) to reduce the dislocation densities. The present contribution elaborates on possible dislocation origination mechanisms that determine the population of dislocations in the epitaxial layers. These mechanisms can be controlled to a certain degree by proper deposition procedures. The achieved dislocation populations then determine the processes that can reduce the dislocation densities during growth of the epitaxial layers. The mutual annihilation of threading dislocations is rather efficient although affected by the glide properties of the growing epitaxial crystal and the thermal stresses during the cooling down after growth.

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Edited by:

A. Cavallini, H. Richter, M. Kittler and S. Pizzini

Pages:

39-46

DOI:

10.4028/www.scientific.net/SSP.131-133.39

Citation:

H. P. Strunk "Origination and Properties of Dislocations in Thin Film Nitrides", Solid State Phenomena, Vols. 131-133, pp. 39-46, 2008

Online since:

October 2007

Authors:

Export:

Price:

$38.00

[1] S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys. 31 (1991) L1708.

[2] B. Monemar and G. Pozina, Progr. Quantum Electronics 24 (2000) 239.

[3] S.D. Lester, F.A. Ponce, M.G. Craford and D.A. Steigerwald, Appl. Phys. Lett. 66 (1995) 1249.

[4] S. Nakamura, Semicond. Sci. Technol. 14 (1999) R27.

[5] T. Miyajima, J. Phys.: Cond. Matter 13 (2001) 7099.

[6] J.W. Matthews, J. Vac. Soc. Technol. 12 (1975) 126.

[7] J.W. Matthews, S. Mader and T.B. Light, J. Appl. Phys. 41 (1970) 3800.

[8] E.A. Fitzgerald, Mater. Sci. Rep. 7 (1991) 87.

[9] R. Hull and J.C. Bean, Crit. Rev. Solid State Mater. Sci. 17 (1992) 507.

[10] R. Beanland, D.J. Dunstan and P.J. Goodhew, Adv. Phys. 45 (1996) 87.

[11] J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara and I.K. Robinson, J. Vac. Sci. Technol. A2 (1984) 436.

[12] E. Kasper and H. -J. Herzog, Thin Solid Films 44 (1977) 357.

[13] R. People and J.C. Bean Appl. Phys. Lett. 47 (1985) 322 and 49 (1986) 229.

[14] B. Pichaud, M. Putero and N. Burle, phys. stat. sol. (a) 171 (1999) 251.

[15] A.J. Pidduck, D.J. Robbins and A.G. Cullis, Thin Solid Films 222 (1992) 78.

[16] D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64 (1990) (1943).

[17] S. Christiansen, M. Albrecht, J. Michler and H.P. Strunk, phys. stat. sol. (a) 156 (1996) 129.

[18] S.H. Christiansen: The interaction square in heteroepitaxial growth: strain-topology- defects- composition, volume 4 of series Mikrostrukturelle Materialforschung, edited by H.P. Strunk (Verlag Lehrstuhl für Mikrocharakterisierung, Erlangen, Germany 1997) ISBN3-932392-04-3).

[19] M. Becker, S. Christiansen, M. Albrecht, H.P. Strunk and H. Wawra, J. Crystal Growth, in press.

[20] S.H. Christiansen, M. Schmidbauer, H. Wawra, R. Schneider, W. Neumann and H.P. Strunk, in: Lateral Alignment of Epitaxial Quantum Dots, edited by O. Schmidt, chapter 5, Springer Publishing Berlin, Germany (2007).

[21] W. Dorsch, B. Steiner, M. Albrecht, H.P. Strunk, H. Wawra and G. Wagner, J. Crystal Growth 183 (1998) 305.

[22] M. Albrecht, H.P. Strunk, R. Hull and J.M. Bonar, Appl. Phys. Lett. 62 (1993) 2206.

[23] H.P. Strunk, in: Electron Microscopy of Boundaries and Interfaces in Materials Science, edited by J. Heidenreich and W. Neumann, The International Centre of Electron Microscopy at the Max-Planck-Institute of Microstructure Physics, Halle, Germany, 1995, p.126.

[24] M. Albrecht, S. Christiansen, H.P. Strunk, P.O. Hansson and E. Bauser, Solid State Phenomena 32&33 (1993) 433.

[25] J. Godet, S. Brochard, L. Pizzagalli, P. Beauchamp and J. M. Soler, Phys. Rev. B 73 (2006) 092105.

[26] M.D. Rouhani, H. Kassem, J. Dalla Torre, G. Landa, A. Rocher and D. Esteve, Mater. Sci. Engg. B 88 (2002) 181.

[27] I. Yonenaga and T. Suzuki, Phil. Mag. Lett. 82 (2002) 535.

[28] K. Lorenz, M. Gonsalves, Wook Kim, V. Narayan and S. Mahajan, Appl. Phys. Lett. 77 (2000) 3391.

[29] M.J. Kappers, R. Datta, R.A. Oliver, F.D.G. Rayment, M.E. Vickers and C.J. Humphreys, J. Crystal Growth 300 (2007) 70.

[30] I. Grzegory, M. Boćkowski, B. Łucznik and S. Porowski, J. Ceram. Processing Res. 6 (2005) 118.

[31] R Yakimova and B. Monemar editors: First International Symposium on Growth of Nitrides, J. Crystal Growth 300 (2007) issues 1 and 2.

[32] T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht and H. P. Strunk, Phil. Mag. A 78 (1997) 1013.

DOI: 10.1080/01418619808221225

[33] M. Albrecht, S. Christiansen and H.P. Strunk, Appl. Phys. Lett. 70 (1997) 952.

[34] B. Jahnen, M. Albrecht, W. Dorsch, S. Christiansen, H.P. Strunk, D. Hanser and R.F. Davis, MRS Internet J. Nitride Semicond. Res. 3 (1998) 39.

DOI: 10.1557/s1092578300001113

[35] M. Albrecht, I.P. Nikitina, A.E. Nikolaev, Yu.V. Melnik, V.A. Dmitriev and H.P. Strunk, phys. stat. sol. 176 (1999) 453.

In order to see related information, you need to Login.