Electroluminescence from ZnO/n+-Si Heterojunction

Abstract:

Article Preview

The ZnO/n+-Si heterojunction has been fabricated via depositing nominally undoped ZnO film by reactive sputtering on a heavily arsenic-doped (n+) silicon substrate. The sputtered ZnO film was n-type in conductivity with an electron concentration of 1.0×1018 cm-3. The current-voltage characteristics indicate that the ZnO/n+-Si heterojunction does not possess rectifying function. Under the forward bias with the negative voltage applied on the n+-Si substrate, the heterojunction emits ultraviolet and broad visible lights characteristics of near-band-edge and defect-related emissions of ZnO, respectively. The EL mechanism has been tentatively explained in terms of the energy-band diagram.

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Edited by:

A. Cavallini, H. Richter, M. Kittler and S. Pizzini

Pages:

625-628

DOI:

10.4028/www.scientific.net/SSP.131-133.625

Citation:

X. Y. Ma et al., "Electroluminescence from ZnO/n+-Si Heterojunction", Solid State Phenomena, Vols. 131-133, pp. 625-628, 2008

Online since:

October 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.