Structure and Anelasticity of Fe-Ge Alloys


Article Preview

Several ternary Fe – Ge - C alloys with Ge contents ranging between 3 and 27 at. % have been studied. The structure, anelastic, thermodynamic and kinetic phenomena in Fe - 3, - 12, - 19/21 and – 27 Ge have been examined by X-ray diffraction (XRD), heat flow (DSC), vibrating sample magnetometry (VSM), optical-light and scanning electron microscopy, and internal friction (IF) methods. The Fe - 3Ge and Fe - 12Ge alloys form b.c.c. solid solutions. A Snoek-type internal friction (P1) peak is recorded in the Fe - 3Ge alloy with parameters similar to those for α-Fe: Н = 0.86 eV, Δ = 0.015, β = 0.72 and τ0 = 2 × 10-15 s, showing that Ge atoms have little influence on the diffusivity of carbon in iron. The Fe - 12Ge alloy, with a Curie point around 1008 K, has several IF peaks: a broad Snoek-type (P1 and P2), the P3 peak caused by structural changes in as quenched specimens during annealing, and a P4 (Zener) peak at higher temperature (Tm ≈ 773 K at f = 2 Hz, β ≈ 0.7). The Fe - 21Ge alloy has bcc or bcc plus hexagonal structure depending on heat treatment. The structure of the Fe3Ge-type alloy (Fe - 27Ge) consists mainly of hexagonal phases, i.e. hexagonal ε (D019), β (B81), and cubic ε′ (L12), and exhibits corresponding magnetic ordering transitions below 873 K which are not well-reflected in the common Fe - Ge phase diagrams. In particular a high stability of the hexagonal ε phase at room temperature is noted. A broad internal friction relaxation peak with Δ = 0.0036, H ≈ 1.8 eV and τ 0 = 2 ⋅ 10-17 s is found in Fe – 27 Ge and is classified as a double Zener peak in the ε and β two-phase mixture.



Solid State Phenomena (Volume 137)

Edited by:

Igor S. Golovin and Daniil M. Levin






I. S. Golovin et al., "Structure and Anelasticity of Fe-Ge Alloys", Solid State Phenomena, Vol. 137, pp. 59-68, 2008

Online since:

March 2008




In order to see related information, you need to Login.