Dislocation Engineering in Multicrystalline Silicon


Article Preview

Dislocations are known to be among the most deleterious performance-limiting defects in multicrystalline silicon (mc-Si) based solar cells. In this work, we propose a method to remove dislocations based on a high temperature treatment. Dislocation density reductions of >95% are achieved in commercial ribbon silicon with a double-sided silicon nitride coating via high temperature annealing under ambient conditions. The dislocation density reduction follows temperature-dependent and time-dependent models developed by Kuhlmann et al. for the annealing of dislocations in face-centered cubic metals. It is believed that higher annealing temperatures (>1170°C) allow dislocation movement unconstrained by crystallographic glide planes, leading to pairwise dislocation annihilation within minutes.



Solid State Phenomena (Volumes 156-158)

Edited by:

M. Kittler and H. Richter




M. I. Bertoni et al., "Dislocation Engineering in Multicrystalline Silicon", Solid State Phenomena, Vols. 156-158, pp. 11-18, 2010

Online since:

October 2009




[1] B.L. Sopori and W. Chen, Journal of Crystal Growth Vol. 210 (2000) p.375.

[2] G. Stokkan, S. Riepe, O. Lohne, and W. Warta, Journal of Applied Physics Vol. 101 (2007), p.053515.

[3] C. Donolato, J. App. Phys. Vol. 84 (1998) p.2656.

[4] V. Kveder, M. Kittler, and W. Schröter, Physical Review B Vol. 63 (2001) p.115208.

[5] M. Seibt, R. Khalil, V. Kveder and W. Schröter, Appl. Phys. A Vol. 96 (2009) p.235.

[6] M. Rinio, S. Peters, M. Werner, A. Lawerenz, and H. -J. Möller, Solid State Phenomena Vol. 82 (2002) p.701.

[7] K. Nakayashiki, V. Meemongkolkiat, and A. Rohatgi, IEEE Transactions on Electron Devices Vol. 52 (2005) p.2243.

[8] J. Isenberg, J. Dicker, and W. Warta, Journal of Applied Physics Vol. 94 (2003) p.4122.

[8] O. Schultz, S.W. Glunz, S. Riepe and G.P. Willeke, Prog. Photovolt: Res. Appl. Vol. 14 (2006) p.711.

[9] M. Rinio, M. Kaes, G. Hahn, and D. Borchert, Proc. 21st European Photovoltaics Conference and Exhibition, Dresden, Germany (2006), p.684.

[10] A. Zuschlag, G. Micard, J. Junge, M. Käs, G. Hahn, G. Coletti, G. Jia, and W. Seifert, Proceedings of the 33rd IEEE Photovoltaics Specialists Conference, San Diego, U.S.A. (2008).

DOI: https://doi.org/10.1109/pvsc.2008.4922800

[11] K. Hartman, M. Bertoni, J. Serdy, T. Buonassisi, Appl. Phys. Let. Vol. 93 (2008) p.122108.

[12] J. Samuels and S. G. Roberts, Proceedings of the Royal Academy of London. Series A, Mathematical and Physical Sciences Vol. 421 (1989) p.1.

[13] A.S. Argon, Strengthening mechanisms in crystal plasticity (Oxford University Press, New York, 2008).

[14] S. Takeuchi and A.S. Argon, Journal of Materials Science Vol. 11 (1976) p.1542.

[15] W.S. Rasband. U. S. National Institutes of Health. http: /rsb. info. nih. gov/ij.

[16] D. Kuhlmann, Proceedings of the Physical Society A Vol. 64 (1951) p.140.

[17] E. Nes, Acta Metallurgica et Materialia Vol. 43(1995) p.2189.

[18] H. Alexander, Crystal Research Technology Vol. 16 (1981) p.231.

[19] Y.M. Huang, J.C.H. Spence, O.F. Sankey Vol. 74 (1995) p.3392.

[20] J.C.H. Spence, Acta Materialia, Vol. 47 (1999) p.4153.

[21] R. Sinton and A. Cuevas, Applied Physics Letters 69 (1996) p.2510.

[22] M. Berg, G. Stokkan and O. Lohne, Proceedings of the 3rd International Workshop on Crystalline Silicon Solar Cells - CSSC3 , SINTEF/NTNU, Trondheim Norway (in press).

Fetching data from Crossref.
This may take some time to load.