Copper In-Depth Distribution in Hydrogen Implanted Cz Si Wafers Subjected to Two-Step Annealing

Abstract:

Article Preview

In this work we have studied the in-depth distribution of copper deposited on the surface of the hydrogen pre-implanted Cz Si wafers depending on the conditions of their subsequent annealing. In the standard n-type 4.5 ∙cm Cz Si wafers different numbers of radiation defects were formed by hydrogen ion implantation with an energy of 100 keV (0.9 m projected range, Rp) for different fluences (11015, 11016, or 41016 at/cm2) at room temperature. Then a copper layer 50-nm thick was deposited on the sample surface by magnetron sputtering at temperatures 250 or 300 oC with subsequent annealing for 4 h at the same temperatures. Whereupon the surface was chemically etched and the samples were annealed in vacuum during 2 h at 700 oC. The depth profiles of copper in the near-surface layer were controlled by RBS investigations both in the random and channeling modes. These experiments have shown that the copper in-depth distribution strongly depends on the implantation fluence and temperature of the low-temperature annealing: in case of copper deposition at 250 oC a relatively strong peak determined by copper on the surface is observed in RBS spectra after all the above-described steps. On the contrary, for higher temperatures of copper deposition (300 oC) a significant decrease in the intensity of this peak is observed in RBS spectra. A maximal concentration of copper at a depth of the projected range, Rp, was observed for the samples implanted with a maximal fluence (41016 at/cm2).

Info:

Periodical:

Solid State Phenomena (Volumes 156-158)

Edited by:

M. Kittler and H. Richter

Pages:

161-166

DOI:

10.4028/www.scientific.net/SSP.156-158.161

Citation:

A.V. Frantskevich et al., "Copper In-Depth Distribution in Hydrogen Implanted Cz Si Wafers Subjected to Two-Step Annealing", Solid State Phenomena, Vols. 156-158, pp. 161-166, 2010

Online since:

October 2009

Export:

Price:

$35.00

[1] J.S. Williams, K.T. Short and A.E. White: Appl. Phys. Lett. Vol. 70 (1997), p.426.

[2] K.L. Beaman, A. Agarwal, O. Kononchuk, S. Koveshnikov, I. Bondarenko, G.A. Rozgonyi: Appl. Phys. Lett. Vol. 71 (1997), p.1107.

DOI: 10.1063/1.119741

[3] P.N.K. Deenapanray and M. Petravic: J. Appl. Phys. Vol. 85 (1999), p.3993.

[4] P.N.K. Deenapanray and M. Petravic: J. Appl. Phys. Vol. 87 (2000), p.2178.

[5] M. Zhang, C. Lin, X. Duo, Z. Lin and Z. Zhou: J. Appl. Phys. Vol. 85 (1999), p.94.

[6] F. Roqueta, L. Ventura, J.J. Grob and R. Je´risian: J. Appl. Phys. Vol. 88 (2000), p.5000.

[7] M. Zhang, C. Lin, P.L.F. Hemment, K. Gutjahr and U. Gösele: Appl. Phys. Lett. Vol. 72 (1998), p.830.

[8] F. Schiettekatte, C. Wintgens and S. Roorda: Appl. Phys. Lett. Vol. 74 (1999), p.1857.

[9] J.S. Williams, M.J. Conway, J. Wong-Leung, P.N.K. Deenapanray, M. Petravic, R.A. Brown, D.J. Eaglesham and D.C. Jacobson: Appl. Phys. Lett. Vol. 75 (1999), p.2424.

DOI: 10.1063/1.125035

[10] A. A. Istratov, C. Flink, H. Hieslmair, E. R. Weber and T. Heiser: Phys. Rev. Lett. Vol. 81 (1998), p.1243.

[11] R.A. Brown, O. Kononchuk, G.A. Rozgonyi, S. Koveshnikov, A.P. Knights, P.J. Simpson, F. Gonzalez: J. Appl. Phys. Vol. 84 (1998), p.2459.

[12] B. Stritzker, M. Petravic, J. Wong-Leung and J.S. Williams: Appl. Phys. Lett. Vol. 78 (1999), p.2682.

[13] R. Kögler, A. Peeva, W. Anwand, G. Brauer, W. Skorupa, P. Werner, U. Gosele: Appl. Phys. Lett. Vol. 75 (1999), p.1279.

[14] G.A. Petersen and S.M. Myers: J. Appl. Phys. Vol. 89 (2001), p.4269.

[15] Y.M. Gueorguiev, R. Kögler, A. Peeva, D. Panknin, A. Mücklich, R.A. Yankov and W. Skorupa: Appl. Phys. Lett. Vol. 75 (1999), p.3467.

DOI: 10.1063/1.125298

[16] A.V. Frantskevich, A.K. Fedotov, N.V. Frantskevich, A.V. Mazanik, E.I. Rau and V.S. Kulikauskas: Mat. Sci. & Eng. B. Vols. 124-125 (2005), p.341.

[17] A.V. Frantskevich, A.M. Saad, A.K. Fedotov, A.V. Mazanik and N.V. Frantskevich: Solid State Phen. Vols. 108-109 (2005), p.187.

[18] www. SRIM. org.

[19] B. Terreault: Physica status solidi (a). Vol. 204 (2007), p.2129.

[20] A.V. Frantskevich, A.M. Saad, A.K. Fedotov, E.I. Rau, A.V. Mazanik and N.V. Frantskevich: Solid State Phen. Vols. 131-133 (2008), p.195.

DOI: 10.4028/www.scientific.net/ssp.131-133.195

[21] M. Ershov, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasilewski and V. Ryzhii: Appl. Phys. Lett. Vol. 70 (1997), p.1828.

[22] N. C. Chen, P. Y. Wang and J. F. Chen: Appl. Phys. Lett. 72 (1999), p.1081.

In order to see related information, you need to Login.