Composite Titanium Dioxide Photocatalysts and the "Adsorb & Shuttle" Approach: A Review

Abstract:

Article Preview

Composite photocatalysts, made of titanium dioxide and high surface area adsorbents become more and more common. To large extent, this is due to the phenomenon of "Adsorb & Shuttle", i.e. the adsorption of molecules on the inert, adsorptive, domains, followed by diffusion to the photocatalytic domains. This manuscript reviews the published literature on composite photocatalysts, and analyzes the various aspects affecting their performance. One of these aspects is the enhancement of the degradation rate of pollutants, which is governed by a variety of factors including surface area, adsorpticity, strength of interaction, the loading of photocatalyst in the composite, and operation parameters (such as temperature, humidity and pH). Other aspects include a reduction in the emission of intermediate products and a different distribution of end-products. Care was taken to describe the possibility of using the inert adsorptive domains to enhance the degradation of specific species, as well as to discuss the effect of composite photocatalysts on deactivation phenomena, and the interrelation between "Adsorb & Shuttle" phenomena and out- diffusion of oxidizing species from the TiO2 domains, known as the "remote degradation" phenomenon.

Info:

Periodical:

Solid State Phenomena (Volume 162)

Edited by:

Maria K. Nowotny and Janusz Nowotny

Pages:

135-162

Citation:

Y. Paz, "Composite Titanium Dioxide Photocatalysts and the "Adsorb & Shuttle" Approach: A Review ", Solid State Phenomena, Vol. 162, pp. 135-162, 2010

Online since:

June 2010

Authors:

Export:

Price:

$38.00

[1] (a) M. M. Holmann: Photodegradation of Water Pollutants (CRC press, Boca Raton, 1996) (b) D.M. Blake: Bibliography of the Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air (NREL, Golden, CO, 1994) (c) O. Legrini, E. Oliveros, E.; M.A. Braun: Chem. Rev. Vol. 45 (1993).

DOI: https://doi.org/10.2172/10149538

[2] P. Salvador: J. Electrochem. Soc. Vol. 128 (1981), p.1895.

[3] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann: Chemical Reviews Vol. 95 (1995), p.69.

[4] T. Torimoto, Y. Okawa, N. Takeda, H. Yoneyama: J. Photocem. Photobiol. A: Chem. Vol. 103 (1997), p.153.

[5] H. Uchida, S. Itoh, H. Yoneyama: Chemistry Letters Vol. 22 (1993), p. (1995).

[6] S. Kedem, Y. Schmidt, Y. Paz, Y. Cohen: Langmuir Vol. 21 (2005), p.5600.

[7] S. Nottakun, J.C. Crittenden, D.W. Hand, D. L Perram, M.E. Mullins: J. Environ. Eng. Vol. 119 (1993), p.695.

[8] J. Matos, J. Laine, J. -M. Herrmann: Applied Catalysis, B: Environmental Vol. 18 (1998), p.281.

[9] S. Sampath, H. Uchida, H. Yoneyama: Journal of Catalysis Vol. 149 (1994), p.189.

[10] Y. Xu, C. H. Langford: J. Phys. Chem. Vol. 99 (1995), p.11501.

[11] C. Anderson, A. Bard: J. Phys. Chem. Vol. 99 (1995), p.9882.

[12] G. Dagan, S. Sampath, O. Lev: Chem. Mater. Vol. 7 (1995), p.446.

[13] K. Mitsuhashi, N. Tagami, K. Tanabe, S. Suzuki, S. Iwanaga, T. Ohkubo, H. Sakai, M. Koishi, M. Abe: J. Photochem. Photobiol. A: Chemistry Vol. 185 (2007), p.133.

[14] K.Y. Jung, S.B. Park: Applied Catalysis: B Environmental, Vol. 25 (2000), p.249.

[15] M. Harada, M. Honda, H. Yamsahita, M. Anpo: Research on Chemical Intermediates Vol. 25 (1999), p.757.

[16] S. X. Liu, X. Y. Chen, X. Chen: Journal of Hazardous Materials, Vol. 143 (2007), p.257.

[17] H. Hou, H. Miyafuji, S. Saka: Journal of Mater. Sci. Vol. 41 (2006), p.8295.

[18] T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, M. Inagaki: J. Mater. Chem. Vol. 12 (2002), p.1391.

[19] H. Yamashita, M. Harada, A. Tanii, M. Honda, M. Takeuchi, Y. Ichihashi, M. Anpo, N. Iwamoto, N. Itoh, T. Hirao: Catalysis Today Vol. 63 (2000) p.63.

[20] J. Matos, J. Laine, J.M. Herrmann: Carbon Vol. 37 (1999), p.1870.

[21] D. Li, Y.N. Xia: Nano Letters Vol. 3 (2003), p.555.

[22] C. -H. He, J. Gong: Polymer Degradation and Stability Vol. 81 (2003), p.117.

[23] A. Avraham- Shinman, Y. Paz: Israel Journal of Chemistry Vol. 46, (2006), p.33.

[24] R. W. Matthews: Journal of Catalysis Vol. 113 (1988), p.549.

[25] S. Notthakun, J.C. Crittenden, D.W. Hand, D. L. Perram, M.E. Mullins: J. Environ. Eng. Vol. 119 (1993), p.695.

[26] C. J. G. Cornu, A. J. Colussi, M. R. Hoffmann: J. Phys. Chem. B Vol. 105 (2001), p.1351.

[27] N. Takeda, T. Torimoto, S. Sampath, S. Kuwabata, H. Yoneyama: J. Phys. Chem. Vol. 99 (1995), p.9986.

[28] F. -S. Zhang, j. O. Nriagu, H. Itoh: J. Photochem. Photobiol. A: Chemistry Vol. 167 (2004), p.223.

[29] I. -S. Park, S. Y. Choi, J. S. Ha: Chemical Physics Letters Vol. 456 (2008), p.198.

[30] C. H. Ao, S.C. Lee: J. Photochem. Photobiol. A: Chemistry, Vol. 161 (2004), p.131.

[31] C. S. Turchi, D. F. Ollis: Journal of Catalysis Vol. 122, (1990), p.178.

[32] T. Torimoto, S. Ito, S. Kuwabata, H. Yoneyama: Environ. Sci. Technol. Vol. 30 (1996), p.1275.

[33] N. Takeda, B. Ohtani, T. Torimoto, S. Kuwabata, H. Yoneyama: J. Phys. Chem. B Vol. 101 (1997), p.2644.

[34] H. Yoneyama, T. Torimoto: Catalysis Today Vol. 58 (2000), p.133.

[35] C. H. Ao, S.C. Lee: J. Photochem. Photobiol. A: Chemistry, Vol. 161 (2004), p.131.

[36] T. Guo, Z. Bai, C. Wu, T. Zhu: Applied Catalysis B: environmental Vol. 79 (2008), p.171.

[37] Q. Geng, Q. Guo, C. Cao, L. Wang: Ind. Eng. Chem. Res. Vol. 47 (2008), p.2561.

[38] M.R. Nimlos, W.A. Jacoby, D.M. Blake, T.A. Milne: Environ. Sci. Technol. Vol. 27 (1993), p.732.

[39] M. Muneer, J. Theurich, D. Bahnemann: Research on Chemical Intermediates Vol. 25 (1999), p.667.

[40] J. -M. Herrmann, J. Matos, J. Disdier, C. Guillard, J. Laine, S. Malato, J. Blanco: Catalysis Today Vol. 54 (1999), p.255.

[41] C.H. Ao, S. C. Lee: Chemical Engineering Science Vol. 60 (2005), p.103.

[42] Y. Ao, J. Xu, D. Fu, X. Shen, C. Yuan: Colloids and Surfaces A: Physicochem. Eng. Aspects Vol. 312 (2008), p.125.

[43] X. Li, C. Kutal: Journal of Materials Science Letters Vol. 21 (2002), p.1525.

[44] M. Kitano, M. Matsuoka, M. Ueshima, M. Anpo: Applied Catalysis A: General Vol. 325 (2007), p.1.

[45] M. Anpo, S. Higashimoto, Y. Shioya, K. Ikeue, M. Harada, M. Watanabe: Studies in Surface Science and Catalysis, Vol. 140 (2001), p.27.

[46] Y. Paz: Comptes Rendus. Chimie Vol. 9, (2006), p.774.

[47] J. Matos, J. Laine, J. -M. Herrmann: Journal of Catalysis Vol. 200 (2001), p.10.

[48] H. Hidaka, K. Nohara, J. Zhao, N. Serpone, E. Pelizzetti: J. Photochem. Photobiol. A: Chem. Vol. 64 (1992), p.247.

[49] L.R. Matthews, D. Avnir, A. D. Modestov, S. Sampath, O. Lev: J. Sol-Gel Science and Technology Vol. 8 (1997), p.619.

[50] K. Inumaru, M. Murashima, T. Kasahara, S. Yamanaka: Applied Catalysis B: Environmental Vol. 52 (2004), p.275.

[51] O. V. Makarova, T. Rajh, M. C. Thurnauer, A. Martin, P.A. Kemme, D. Cropek: Environ. Sci. Technol. Vol. 34 (2000), p.4797.

[52] S. Ghosh-Mukerji, H. Haick, M. Schvartzman, Y. Paz: J. Am. Chem. Soc. Vol. 123 (2001), p.10776.

DOI: https://doi.org/10.1021/ja0117635

[53] Y. Sagatelian, D. Sharabi, Y. Paz: J. Photochem. Photobiol. A. Vol. 174, (2005) p.253.

[54] H. Haick, Y. Paz: J. Phys. Chem. B Vol. 105 (2001), p.3045.

[55] E. Zemel, H. Haick, Y. Paz: J. Adv. Oxid. Technol. Vol. 5 (2002), p.27.

[56] S. Ghosh-Mukerji, H. Haick, Y. Paz: J. Photochem. Photobiol. A: Chemistry Vol. 160 (2003), p.77.

[57] Y. Lou, D.F. Ollis: J. Catal. Vol. 163 (1996), p.1.

[58] S. Kedem, Y. Cohen, E. Zussman, A. Yarin, Y. Paz in "Proceedings of the TiO2-9 meeting, San- Diego, 2004. Editors: D. Ollis and H. Al-Ekabi, Redox Technologies Inc., London, Ontario, (2005).

[59] S. Kedem, D. Rozen, Y. Cohen, Y. Paz, submitted.

[60] T. Tatsuma, S. Tachibana, A. Fujishima: J. Phys. Chem. B Vol. 105 (2001), p.6987.

[61] M. C. Lee, W. Choi, J. Phys. Chem. B Vol 106 (2002), p.11818.

[62] Y. Murakami, K. Endo, I. Ohta, A. Y. Nosaka, Y. Nosaka: J. Phys. Chem. C Vol. 111 (2007), p.11339.

[63] S. Liu, X. Chen: Journal of Chemical Technology and Biotechnology Vol. 82, (2007), p.453.

[64] (a) R.C. Bansal, J. -B. Donnet, F. Stockli: Active Carbon", (Marcel Dekker, NY, 1988) (b) P.N. Chmisinoff, "Handbook of Water and Wastewater Treatment Technology, (Marcel Dekker, NY , 1995).

[65] C. H. Ao, S.C. Lee: J. Photochem. Photobiol. A: Chemistry, Vol. 161 (2004), p.131.

[66] T. Maggos, A. Plassais, J. G. Bartzis, C. Vasilakos, N. Moussiopoulos, L. Bonafous: Environ. Monit. Assess. Vol 136 (2008), p.35.

DOI: https://doi.org/10.1007/s10661-007-9722-2

[67] B. Disanayaka, R. Divigalpitiya, D. Livingstone, International Patent WO 96/37281 (1996).

[68] D. Wei, T. H. Vanderspurt, S.O. Hay, W.R. Schmidt, T.N. Obee, U.S. Patent US2005 / 0129591 A1 (2005).