Sol-Gel Titania and Titania-Silica Mixed Oxides Photocatalysts

Abstract:

Article Preview

This paper presents a review of the work published by the authors on the synthesis, characterization and evaluation of the photocatalytic activity of TiO2/SiO2 materials. The use of titania-silica mixed oxides photocatalysts is proposed basically as a process improvement to overcome the difficulties of recovering titania from the slurries after the photocatalytic treatment of contaminated waters. To understand the mechanism governing the photocatalytic activity of these materials, several titania-silica photocatalysts have been prepared through a sol-gel method that allows controlling the main variables to obtain materials with different textural properties, degree of titania incorporation, dispersion of the photoactive phase and crystallinity of titanium dioxide. The samples have been characterized in depth, looking for correlations between the main physicochemical properties (TiO2 crystallite size, band gap energy and titania surface area) and the activity shown in the photocatalytic oxidation of cyanide, selected as model pollutant. The results suggest that the photocatalytic activity is strongly influenced by the quality of the titania crystal network, which in turn is improved by the use of a hydrothermal crystallization procedure. Additionally, the evaluation of the fraction of the total surface area corresponding to titania is mandatory for comparing the catalytic activity of different materials in processes in which titanium dioxide is the only phase catalytically active and silica behaves as an inert support.

Info:

Periodical:

Solid State Phenomena (Volume 162)

Edited by:

Maria K. Nowotny and Janusz Nowotny

Pages:

221-238

Citation:

R. van Grieken et al., "Sol-Gel Titania and Titania-Silica Mixed Oxides Photocatalysts ", Solid State Phenomena, Vol. 162, pp. 221-238, 2010

Online since:

June 2010

Export:

Price:

$38.00

[1] D.C.M. Dutoit, M. Schneider and A. Baiker, J. Catal. Vol. 163 (1995), p.165.

[2] Z. Liu and R.J. Davis, J. Phys. Chem. Vol. 98 (1994), p.1253.

[3] R. Mariscal, M. López-Granados, J.L.G. Fierro, J.L. Sotelo, C. Martos and R. van Grieken, Langmuir Vol. 16 (2000), p.9460.

DOI: https://doi.org/10.1021/la000876j

[4] C. Anderson and A.J. Bard, J. Phys. Chem. Vol. 99 (1995), p.9882.

[5] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. Vol. 95 (1995), p.69.

[6] M. J: López-Muñoz, R. van Grieken, J. Aguado, J. Marugán, Catal. Today Vol. 101 (2005), p.307.

[7] R.L. Pozzo, M.A. Baltanás and A.E. Cassano, Catal. Today Vol. 39 (1997), p.219.

[8] C. Anderson and A.J. Bard, J. Phys. Chem. B Vol. 101 (1997), p.2611.

[9] K.Y. Jung and S.B. Park, J. Photochem. Photobiol. A: Chem. Vol. 127 (1999), p.117.

[10] H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M.A. Fox, C. Louis and M. Che, J. Phys. Chem. B Vol. 102 (1998), p.5870.

[11] M. Addamo, V. Augugliaro, A. Di Paola, E. García-López, V. Loddo, G. Marcì, R. Molinari, L. Palmisano and M. Schiavello, J. Phys. Chem. B Vol. 108 (2004), p.3303.

DOI: https://doi.org/10.1002/chin.200421014

[12] P. Pizarro, C. Guillard, N. Perol and J.M. Herrmann, Catal. Today Vol. 101 (2005), p.211.

[13] A.G. Agrios and P. Pichat, J. Photochem. Photobiol. A: Chem. Vol. 180 (2006), p.130.

[14] A.I. Biaglow, R.J. Gorte, S. Srinivasan and A.K. Datye, Catal. Lett. Vol. 13 (1992), p.313.

[15] J. Marugán, M.J. López-Muñoz, J. Aguado and R. van Grieken, Catal. Today Vol. 124 (2007), p.103.

[16] J.L. Sotelo, R. van Grieken and C. Martos, Chem. Commun. (1999), p.549.

[17] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Frederickson, B.F. Chmelka and G.D. Stucky, Science Vol. 279 (1998), p.548.

[18] P.H. Mutin, V. Lafond, A.F. Popa, M. Granier, L. Markey and A. Dereux, Chem. Mater. Vol. 16 (2004), p.5670.

DOI: https://doi.org/10.1021/cm035367s

[19] L.S. Clesceri, A.E. Greenberg, A.D. Eaton (Eds. ), Standard Methods for the Examination of Water and Wastewater, 20 th Edition, American Public Health Association, American Water Works Association, Water Environment Federation; United Book Press Inc., Baltimore, Maryland, United States, (1998).

[20] G. Lassaleta, A. Fernández, J.P. Espinós and A.R. González-Elipe, J. Phys. Chem. Vol. 99 (1995), p.1848.

[21] C.K. Chan, J.F. Porter, Y.G. Li, W. Guo and C.M. Chan, J. Am. Ceram. Soc. Vol. 3 (1999), p.566.

[22] M.A. Fox and M. Dulay, Chem. Rev. Vol. 93 (1993) p.341.

[23] Z. Ding, G.Q. Lu and P.F. Greenfield, J. Phys. Chem. B Vol. 104 (2000), p.4815.

[24] J. Aguado, R. van Grieken, M.J. López-Muñoz and J. Marugán, Appl. Catal. A Vol. 312 (2006), p . 202.

[25] R. van Grieken, J. Aguado, M.J. López-Muñoz and J. Marugán, J. Photochem. Photobiol. A. Vol. 148 (2002), p.315.

[26] M.I. Cabrera, O.M. Alfano and A.E. Cassano, J. Phys. Chem., Vol. 100 (1996) p.20043.

[27] R.I. Bickley, T. González-Carreño, J.S. Lees, L. Palmisano and R.J.D. Tilley, J. Solid State Chem. Vol. 92 (1991), p.178.

DOI: https://doi.org/10.1016/0022-4596(91)90255-g

[28] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. Vol. 95 (1995), p.69.

[29] S.T. Martin, H. Herrmann, W. Choi and M.R. Hoffmann, J. Chem. Soc. Faraday Trans. Vol. 90 (1994) p.3315.

[30] J. Aguado, R. van Grieken, M.J. López-Muñoz and J. Marugán, Catal. Today Vol. 75 (2002), p . 95.

[31] S. Gontier and A. Tuel, Zeolites Vol. 15 (1995), p.601.

[32] M.A. Uguina, D.P. Serrano, G. Ovejero, R. van Grieken and M. Camacho, Appl. Catal. A: Gen. Vol. 124 (1995), p.391.