Titanium Dioxide Photocatalyst - Unresolved Problems


Article Preview

The present work considers the performance of TiO2-based photosensitive oxide semiconductors as photocatalysts for water purification. This paper brings together the concepts of solid state chemistry for nonstoichiometric compounds and the concepts of photocatalysis in order to discuss the reactivity between TiO2 and water including microorganisms (bacteria and viruses). The performance of TiO2 photocatalysts are considered in terms of a model of photoelectrochemical cell. The experimental data on photocatalytic removal of microorganisms from water are considered in terms of the effect of several properties, including pH, dispersion, light intensity, and temperature. It is argued that correct understanding of the performance of TiO2 photocatalysts requires recognition that properties of TiO2, which is a nonstoichiometric compound, are determined by defect disorder and the related ability to donate or accept electrons. The photocatalytic properties of TiO2 are considered in terms of the reactivity of both anodic and cathodic sites with water and the related charge transfer at the TiO2/H2O interface. It is shown that the formation of well defined photocatalysts requires knowledge of mass and charge transfer during processing and performance, respectively. The main hurdles in the development of high-performance photocatalysts are discussed.



Solid State Phenomena (Volume 162)

Edited by:

Maria K. Nowotny and Janusz Nowotny




T. Bak et al., "Titanium Dioxide Photocatalyst - Unresolved Problems", Solid State Phenomena, Vol. 162, pp. 77-90, 2010

Online since:

June 2010




[1] A.L. Linsebigler, G. Lu and J.T. Yates: Chem. Rev. Vol. 95 (1995) p.735.

[2] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann: Chem. Rev. Vol. 95 (1995) p.69.

[3] O. Carp, C.L. Huisman and A. Reller: Prog. Solid State Chem. Vol. 32 (2004) p.33.

[4] A. Fujishima, T. N. Rao and D.A. Tryk: J. Photochem. Photobiol., C Vol. 1 (2000) p.1.

[5] S. -K. Lee and A. Mills: J. Ind. Eng. Chem. Vol. 10 (2004) p.173.

[6] M. Ni, M.K.H. Leung, D.Y.C. Leung and K. Sumathy: Renewable Sustainable Energy Rev. Vol. 11 (2007) p.401.

[7] M.K. Nowotny, L.R. Sheppard, T. Bak and J. Nowotny: J. Phys. Chem. C Vol. 112 (2008) p.5275.

[8] T. Matsunaga, R. Tomoda, T. Nakajima and H. Wake: FEMS Microbiol. Lett. Vol. 29 (1985) p.211.

[9] M. Lindner, J. Theurich and D.W. Bahnemann: Water Sci. Technol. Vol. 35 (1997) p.79.

[10] J.C. Yang, Y.C. Kim, Y.G. Shul, C.H. Shin and T.K. Lee: Appl. Surf. Sci. Vol. 121-122 (1997) p.525.

[11] Y. Nosaka, M. Kishimoto and J. Nishino: J. Phys. Chem. B Vol. 102 (1998) p.10279.

[12] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann and V. Murugesan: Water Res. Vol. 38 (2004) p.3001.

[13] H. Gerischer: Solar Energy Conversion: Solid-State Physics Aspects, B.O. Seraphin, Ed. Vol. 31 of Topics in Applied Physics (Springer, Berlin, 1979) pp.115-172.

[14] P. -C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E. J. Wolfrum and W.A. Jacoby: Appl. Environ. Microb. Vol. 65 (1999) p.4094.

[15] Y. Nakato, H. Akanuma, Y. Magari, S. Yae, J. -I. Shimizu and H. Mori: J. Phys. Chem. B Vol. 101 (1997) p.4934.

[16] C.S. Zalazar, C.A. Martin and A.E. Cassano: Chem. Eng. Sci. Vol. 60 (2005) p.4311.

[17] K. Wilke and H.D. Breuer: J. Photochem. Photobiol., A Vol. 121 (1999) p.49.

[18] A. Kudo, K. Omori and H. Kato: J. Am. Chem. Soc. Vol. 121 (1999) p.11459.

[19] R. Nakamura, T. Tanaka and Y. Nakato: J. Phys. Chem. B Vol. 108 (2004) p.10617.

[20] Y. Liu, J. Li, X. Qiu and C. Burda: Water Sci. Technol. Vol. 54 (2006) p.47.

[21] H. Kim and W. Choi: Appl. Catal., B Vol. 69 (2007) p.127.

[22] G. Alhakimi, L.H. Studnicki and M. Al-Ghazali: J. Photochem. Photobiol., A Vol. 154 (2003) p.219.

[23] A. -G. Rinc´on and C. Pulgarin: Appl. Catal., B Vol. 44 (2003) p.263.

[24] A. -G. Rinc´on and C. Pulgarin: Appl. Catal., B Vol. 51 (2004) p.283.

[25] S. Sakthivel, M.C. Hidalgo, D.W. Bahnemann, S. -U. Geissen, V. Murugesan and A. Vogelpohl: Appl. Catal., B Vol. 63 (2006) p.31.

[26] C.C. Chen, C.S. Lu, Y.C. Chung and J.L. Jan: J. Hazard. Mater. Vol. 141 (2007) p.520.

[27] J. Blanco Galvez and S. Malato Rodri´guez: Solar detoxification Renewable energies (UNESCO Pub., Paris, 2003).

[28] B. Kim, D. Kim, D. Cho and S. Cho: Chemosphere Vol. 52 (2003) p.277.

[29] T. Saito, T. Iwase, J. Horie and T. Morioka: J. Photochem. Photobiol., B Vol. 14 (1992) p.369.

[30] D. Gumy, C. Morais, P. Bowen, C. Pulgarin, S. Giraldo, R. Hajdu and J. Kiwi: Appl. Catal., B Vol. 63 (2006) p.76.

[31] C. Wei, W.Y. Lin, Z. Zainal, N.E. Williams, K. Zhu, A.P. Kruzic, R.L. Smith and K. Rajeshwar: Environ. Sci. Technol. Vol. 28 (1994) p.934.

[32] V.A. Nadtochenko, A. -G. Rincon, S.E. Stanca and J. Kiwi: J. Photochem. Photobiol., A Vol. 169 (2005) p.131.

[33] P.S.M. Dunlop, J.A. Byrne, N. Manga and B.R. Eggins: J. Photochem. Photobiol., A Vol. 148 (2002) p.355.

[34] A. -G. Rinc´on and C. Pulgarin: Appl. Catal., B Vol. 49 (2004) p.99.

[35] P. Kofstad: Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley- Interscience, New York, 1972).

[36] J. Nowotny, T. Bak, M.K. Nowotny and L.R. Sheppard: J. Phys. Chem. C Vol. 112 (2008) p.602.

[37] International Organization for Standardization: Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for antibacterial activity of semiconducting photocatalytic materials (ISO 27447: 2009).

DOI: https://doi.org/10.3403/30166878

[38] T.N. Norby and J. Nowotny: Effect of hydrogen on defect disorder of TiO2 (2010) in preparation for publication.

Fetching data from Crossref.
This may take some time to load.