Tayloring the Photocatalytical Activity of Anatase TiO2 Thin Film Electrodes by Three-Dimensional Mesoporosity


Article Preview

Mesoporous titanium dioxide (m-TiO2) thin film electrodes were synthesized by evaporation-induced self-assembly (EISA), utilizing a novel type of amphiphilic block copolymer as template. The ordered network of pores shows an accessible inner volume that results in a huge BET-surface and a distinct transparency. According to X-ray diffraction analyses the mesoporous films are highly crystalline after calcination at 550°C. 1D and 2D small-angle X-ray scattering and transmission electron microscopy investigations prove the high quality of the mesopore texture over micrometer-sized areas. These well-defined, crystalline m-TiO2 films show an increased photoactivity for overall water splitting and oxidation of formic acid as compared to porous films prepared in the same manner without a template. The performance of the electrodes was analyzed by measuring the photocurrent and the mass signal of liberated gas by electrochemical mass spectroscopy (EMS). These experiments reveal that film morphology have a great influence to the I-V characteristic of photoelectrodes. An appropriate crystallization temperature is indispensable to obtain an optimum between crystallinity, morphology and photoactivity and to prevent collapse of the mesopore architecture.



Solid State Phenomena (Volume 162)

Edited by:

Maria K. Nowotny and Janusz Nowotny




B. Neumann et al., "Tayloring the Photocatalytical Activity of Anatase TiO2 Thin Film Electrodes by Three-Dimensional Mesoporosity ", Solid State Phenomena, Vol. 162, pp. 91-113, 2010

Online since:

June 2010




[1] a) J.R. Bolton: Solar Power and Fuels" (Academic Press 1977); b) J.R. Norris, D. Meisel: "Photochemical Energy Conversion" (Elsevier 1998); c) Y.V. Pleskov: "Solar Energy Conversion, (Springer Verlag 1990).

[2] a) S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch: J. Phys. Chem. B Vol. 104 (2000).

[3] a) A.J. Bard: J. Phys. Chem. Vol 86, (1982), p.172; b) S. Licht: J. Phys. Chem B Vol. 15, (2001), p.6281.

[4] A. Fujishima, K. Honda: Nature, Vol. 238 (1972), p.37.

[5] a) A. Fujishima, K. Hashimoto, T. Watanabe; TiO2 photocatalysis - fundamentals and applications, (BKC, Inc., Tokyo, 1999); b) Y. Ohko, K. Iuchi, C. Niwa, T. Tatsuma, T. Nakashima, T. Iguchi, Y. Kubota, A. Fujishima: Environ. Sci. Tech. Vol. 36 (2002).

DOI: 10.1021/es011500a

[6] a) A.L. Linsebigler, G. Lu, J.T. Yates: Chem. Rev. Vol. 95 (1995), p.735. b) M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann: Chem. Rev. Vol. 95 (1995), p.69.

[7] A. Fujishima, D.A. Tryk, T.N. Rao: J. Photochem. Photobiol. C Vol. 1 (2000), p.1.

[8] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe: Nature Vol. 388 (1997), p.431 and Adv. Mater. Vol. 10 (1998), p.135.

DOI: 10.1002/(sici)1521-4095(199801)10:2<135::aid-adma135>3.3.co;2-d

[9] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima: J. Photochem. Photobiol. A Vol. 106 (1997), p.51.

[10] T. Bak, J. Nowotny, M. Rekas, C. C Sorrell: Int. J. Hydrogen Energy Vol. 27 (2002), p.991.

[11] a) E.L. Wolf Nanophysics and Nanotechnology" (Wiley-VCH, 2005); b) C. Delerue, M. Lanoo "Nanostructures" (Springer, 2004); c) A.S. Edelstein, R.C. Cammarata "Nanomaterials - Synthesis, Properties and Applications, (Bristol, 2002).

[12] S.E. Lindquist : Sol. Energy Mat. & Solar cells Vol. 38 (1995), p.335.

[13] a) E.L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanchez: J. Am. Chem. Soc. Vol. 125 (2003).

[14] K. L Frindell, J. Tang, J.H. Harreld, G.D. Stucky: Chem. Mater. Vol. 16 (2004), p.3524.

[15] J.C. Yu, X. Wang, X. Fu: Chem. Mater Vol. 16 (2004), p.1523.

[16] Q.B. Meng, C.H. Fu, Y. Einaga, Z. Z Gu, A. Fujishima, O. Sato: Chem Mater. Vol. 14 (2002), p.83.

[17] Q. Dai, L.Y. Shi, Y.G. Luo, J.L. Blin, D.J. Li, C.W. Yuan, B.L. Su: J. Photochem. Photobiol. & Chemistry Vol. 148 (2002), p.295.

[18] B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissiere, M. Antonietti, C. Sanchez: Chem. Mater. Vol. 16 (2004), p.2948.

[19] a) G.K. Mor, K. Shankar, O.K. Varghese, C.A. Grimes: J. Mater. Res. Vol. 19 (2004).

[20] H. Yoneyama, T. Torimoto: Catalysis Today Vol. 58 (2000), p.133 and citations therein.

[21] C.J. Brinker, Y. Lu, A. Sellinger, H. Fan: Adv. Mater. Vol. 11 (1999), p.579.

[22] T. Brezesinski; A. Fischer; K. -I. Iimura; C. Sanchez; D. Grosso; M. Antonietti; B. Smarsly: Adv. Functional Mater. Vol. 16 (2006), p.1433.

[23] a) R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman: Phys. Rev. B Vol. 61/11 (2000), p.7459; b) H. Tang, F. Lévy, H. Berger, P.E. Schmid: Phys. Rev. B Vol. 52/11 (1995), p.7771.

[24] S.U.M. Khan, T. Sultana: Sol. Energy Mat. & Solar Cells Vol. 76 (2003), p.211.

[25] D.R. Lide, CRC-Handbook, 77th, (1996, CRC-Press).

[26] a) K. Vindgopal, I. Bedja, P.V. Kamat: Chem. Mat. Vol. 8 (1996).

[27] a) Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa: Coordination Chem. Rev. Vol. 248 (2004), p.1381; L. Liang, S. Dai, L. Hu, F. Kong, W. Xu, K. Wang: J. Phys. Chem. B Vol. 110 (2006), p.12404.

[28] a) P. Salvador, C. Gutierrez: J. Phys. Chem. Vol. 88 (1984), p.3696; b) C.D. Jaeger, A.J. Bard: J. Phys. Chem. Vol. 83 (1979), p.3146 ; c) O.I. Micic, Y. Zhang, K.R. Cromack, A.D. Trifunac, M.C. Thurnauer: J. Phys. Chem. Vol. 97 (1993), p.7277.

[29] a) R. Nakamura, A. Imanishi, K. Murakoshi, Y. Nakato: J. Am. Chem. Soc. Vol. 125 (2003).

[30] O.I. Micic, Y. Zhang, K.R. Cromack, A.D. Trifunac, M.C. Thurnauer: J. Phys. Chem. Vol. 97 (1993), p.13284.

[31] a) M. Bideau, B. Claudel, M. Otterbein: J. of Photochemistry Vol. 14 (1980).

[32] M.A. Fox, M.T. Dulay: Chem. Rev. Vol. 93 (1993), p.341.

[33] R. Nakamura, Y. Nakato: J. Am. Chem. Soc. Vol. 126 (2004), p.1290.

[34] H. Tributsch, J. Nowotny, L. Sheppard, M.K. Nowotny, T. Bak, Energy Materials, in press (2008).

[35] W.W. Gärtner: Phys. Rev. Vol. 116 (1959), p.84.

[36] a) M.A. Butler: J. Appl. Phys. Vol. 48 (1977).

[37] a) G. Schlichthörl, H. Tributsch: Electrochimica Acta Vol. 37 (1992), p.919.; b) R.E. White, J. O´M Bockris, B.E. Conway, Mondern Aspects of Electrochemistry No. 33, p. 433ff (H. Tributsch, Kluwer Academics, 1999).

DOI: 10.1016/0013-4686(92)85043-k

[38] B. Enright, D. Fritzmaurice: J. Phys. Chem. Vol. 100 (1996), p.1027.

[39] C. Kormann, D.W. Bahnemann, M.R. Hoffmann: J. Phys. Chem. Vol. 92 (1988), p.5196.

[40] R. Könenkamp, R. Henninger, P. Hoyer: J. Phys. Chem. Vol. 97 (1993), p.7328.

[41] a) J. Nelson: Phys. Rev. B Vol. 59/23 (1998), p.15374; b) A.M. Eppler, I.M. Ballard, J. Nelson: Physica E Vol. 14 (2002), p.197.

[42] C.H. Hamann, W. Vielstich, Elektrochemie, (Wiley VCH, 1998).

[43] K.D. Benkstein, N. Kopidakis, J. v. de Lagemaat, A.J. Frank: J. Phys. Chem. B Vol. 107 (2003), p.7759.

[44] P. Langevin: Ann. Chim. Phys. Vol. 28 (1903), p.289.

[45] B. Kraeutler, A.J. Bard: J. Am. Chem. Soc. Vol. 100 (1978), p.5985.

Fetching data from Crossref.
This may take some time to load.