Tayloring the Photocatalytical Activity of Anatase TiO2 Thin Film Electrodes by Three-Dimensional Mesoporosity

Abstract:

Article Preview

Mesoporous titanium dioxide (m-TiO2) thin film electrodes were synthesized by evaporation-induced self-assembly (EISA), utilizing a novel type of amphiphilic block copolymer as template. The ordered network of pores shows an accessible inner volume that results in a huge BET-surface and a distinct transparency. According to X-ray diffraction analyses the mesoporous films are highly crystalline after calcination at 550°C. 1D and 2D small-angle X-ray scattering and transmission electron microscopy investigations prove the high quality of the mesopore texture over micrometer-sized areas. These well-defined, crystalline m-TiO2 films show an increased photoactivity for overall water splitting and oxidation of formic acid as compared to porous films prepared in the same manner without a template. The performance of the electrodes was analyzed by measuring the photocurrent and the mass signal of liberated gas by electrochemical mass spectroscopy (EMS). These experiments reveal that film morphology have a great influence to the I-V characteristic of photoelectrodes. An appropriate crystallization temperature is indispensable to obtain an optimum between crystallinity, morphology and photoactivity and to prevent collapse of the mesopore architecture.

Info:

Periodical:

Solid State Phenomena (Volume 162)

Edited by:

Maria K. Nowotny and Janusz Nowotny

Pages:

91-113

DOI:

10.4028/www.scientific.net/SSP.162.91

Citation:

B. Neumann et al., "Tayloring the Photocatalytical Activity of Anatase TiO2 Thin Film Electrodes by Three-Dimensional Mesoporosity ", Solid State Phenomena, Vol. 162, pp. 91-113, 2010

Online since:

June 2010

Export:

Price:

$38.00

[1] a) J.R. Bolton: Solar Power and Fuels" (Academic Press 1977); b) J.R. Norris, D. Meisel: "Photochemical Energy Conversion" (Elsevier 1998); c) Y.V. Pleskov: "Solar Energy Conversion, (Springer Verlag 1990).

[2] a) S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch: J. Phys. Chem. B Vol. 104 (2000).

[3] a) A.J. Bard: J. Phys. Chem. Vol 86, (1982), p.172; b) S. Licht: J. Phys. Chem B Vol. 15, (2001), p.6281.

[4] A. Fujishima, K. Honda: Nature, Vol. 238 (1972), p.37.

[5] a) A. Fujishima, K. Hashimoto, T. Watanabe; TiO2 photocatalysis - fundamentals and applications, (BKC, Inc., Tokyo, 1999); b) Y. Ohko, K. Iuchi, C. Niwa, T. Tatsuma, T. Nakashima, T. Iguchi, Y. Kubota, A. Fujishima: Environ. Sci. Tech. Vol. 36 (2002).

DOI: 10.1021/es011500a

[6] a) A.L. Linsebigler, G. Lu, J.T. Yates: Chem. Rev. Vol. 95 (1995), p.735. b) M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann: Chem. Rev. Vol. 95 (1995), p.69.

[7] A. Fujishima, D.A. Tryk, T.N. Rao: J. Photochem. Photobiol. C Vol. 1 (2000), p.1.

[8] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe: Nature Vol. 388 (1997), p.431 and Adv. Mater. Vol. 10 (1998), p.135.

DOI: 10.1002/(sici)1521-4095(199801)10:2<135::aid-adma135>3.3.co;2-d

[9] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima: J. Photochem. Photobiol. A Vol. 106 (1997), p.51.

[10] T. Bak, J. Nowotny, M. Rekas, C. C Sorrell: Int. J. Hydrogen Energy Vol. 27 (2002), p.991.

[11] a) E.L. Wolf Nanophysics and Nanotechnology" (Wiley-VCH, 2005); b) C. Delerue, M. Lanoo "Nanostructures" (Springer, 2004); c) A.S. Edelstein, R.C. Cammarata "Nanomaterials - Synthesis, Properties and Applications, (Bristol, 2002).

[12] S.E. Lindquist : Sol. Energy Mat. & Solar cells Vol. 38 (1995), p.335.

[13] a) E.L. Crepaldi, G. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, C. Sanchez: J. Am. Chem. Soc. Vol. 125 (2003).

[14] K. L Frindell, J. Tang, J.H. Harreld, G.D. Stucky: Chem. Mater. Vol. 16 (2004), p.3524.

[15] J.C. Yu, X. Wang, X. Fu: Chem. Mater Vol. 16 (2004), p.1523.

[16] Q.B. Meng, C.H. Fu, Y. Einaga, Z. Z Gu, A. Fujishima, O. Sato: Chem Mater. Vol. 14 (2002), p.83.

[17] Q. Dai, L.Y. Shi, Y.G. Luo, J.L. Blin, D.J. Li, C.W. Yuan, B.L. Su: J. Photochem. Photobiol. & Chemistry Vol. 148 (2002), p.295.

[18] B. Smarsly, D. Grosso, T. Brezesinski, N. Pinna, C. Boissiere, M. Antonietti, C. Sanchez: Chem. Mater. Vol. 16 (2004), p.2948.

[19] a) G.K. Mor, K. Shankar, O.K. Varghese, C.A. Grimes: J. Mater. Res. Vol. 19 (2004).

[20] H. Yoneyama, T. Torimoto: Catalysis Today Vol. 58 (2000), p.133 and citations therein.

[21] C.J. Brinker, Y. Lu, A. Sellinger, H. Fan: Adv. Mater. Vol. 11 (1999), p.579.

[22] T. Brezesinski; A. Fischer; K. -I. Iimura; C. Sanchez; D. Grosso; M. Antonietti; B. Smarsly: Adv. Functional Mater. Vol. 16 (2006), p.1433.

[23] a) R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman: Phys. Rev. B Vol. 61/11 (2000), p.7459; b) H. Tang, F. Lévy, H. Berger, P.E. Schmid: Phys. Rev. B Vol. 52/11 (1995), p.7771.

[24] S.U.M. Khan, T. Sultana: Sol. Energy Mat. & Solar Cells Vol. 76 (2003), p.211.

[25] D.R. Lide, CRC-Handbook, 77th, (1996, CRC-Press).

[26] a) K. Vindgopal, I. Bedja, P.V. Kamat: Chem. Mat. Vol. 8 (1996).

[27] a) Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa: Coordination Chem. Rev. Vol. 248 (2004), p.1381; L. Liang, S. Dai, L. Hu, F. Kong, W. Xu, K. Wang: J. Phys. Chem. B Vol. 110 (2006), p.12404.

[28] a) P. Salvador, C. Gutierrez: J. Phys. Chem. Vol. 88 (1984), p.3696; b) C.D. Jaeger, A.J. Bard: J. Phys. Chem. Vol. 83 (1979), p.3146 ; c) O.I. Micic, Y. Zhang, K.R. Cromack, A.D. Trifunac, M.C. Thurnauer: J. Phys. Chem. Vol. 97 (1993), p.7277.

[29] a) R. Nakamura, A. Imanishi, K. Murakoshi, Y. Nakato: J. Am. Chem. Soc. Vol. 125 (2003).

[30] O.I. Micic, Y. Zhang, K.R. Cromack, A.D. Trifunac, M.C. Thurnauer: J. Phys. Chem. Vol. 97 (1993), p.13284.

[31] a) M. Bideau, B. Claudel, M. Otterbein: J. of Photochemistry Vol. 14 (1980).

[32] M.A. Fox, M.T. Dulay: Chem. Rev. Vol. 93 (1993), p.341.

[33] R. Nakamura, Y. Nakato: J. Am. Chem. Soc. Vol. 126 (2004), p.1290.

[34] H. Tributsch, J. Nowotny, L. Sheppard, M.K. Nowotny, T. Bak, Energy Materials, in press (2008).

[35] W.W. Gärtner: Phys. Rev. Vol. 116 (1959), p.84.

[36] a) M.A. Butler: J. Appl. Phys. Vol. 48 (1977).

[37] a) G. Schlichthörl, H. Tributsch: Electrochimica Acta Vol. 37 (1992), p.919.; b) R.E. White, J. O´M Bockris, B.E. Conway, Mondern Aspects of Electrochemistry No. 33, p. 433ff (H. Tributsch, Kluwer Academics, 1999).

DOI: 10.1016/0013-4686(92)85043-k

[38] B. Enright, D. Fritzmaurice: J. Phys. Chem. Vol. 100 (1996), p.1027.

[39] C. Kormann, D.W. Bahnemann, M.R. Hoffmann: J. Phys. Chem. Vol. 92 (1988), p.5196.

[40] R. Könenkamp, R. Henninger, P. Hoyer: J. Phys. Chem. Vol. 97 (1993), p.7328.

[41] a) J. Nelson: Phys. Rev. B Vol. 59/23 (1998), p.15374; b) A.M. Eppler, I.M. Ballard, J. Nelson: Physica E Vol. 14 (2002), p.197.

[42] C.H. Hamann, W. Vielstich, Elektrochemie, (Wiley VCH, 1998).

[43] K.D. Benkstein, N. Kopidakis, J. v. de Lagemaat, A.J. Frank: J. Phys. Chem. B Vol. 107 (2003), p.7759.

[44] P. Langevin: Ann. Chim. Phys. Vol. 28 (1903), p.289.

[45] B. Kraeutler, A.J. Bard: J. Am. Chem. Soc. Vol. 100 (1978), p.5985.

In order to see related information, you need to Login.