The Mössbauer Spectroscopy and X-Ray Diffraction Studies of Phase Transformation during Tempering in High-Carbon Tool Steel

Abstract:

Article Preview

This work presents the results of investigations using Mössbauer spectroscopy technique and XRD, and their interpretation concerning precipitations and transformation of iron carbides and retained austenite stabilization. It also discusses changes in hardened matrix during tempering in relation to previously conducted dilatometric, microscopic and mechanical examinations. This research was carried out using a new high-carbon alloy 120MnCrMoV8-6-4-2 steel, which was designed in 1998, in Phase Transformations Research Group at the AGH UST. The influence of the tempering time on the mechanical and chemical stability of retained austenite and on the products of its transformation, nucleation and solubility of iron carbides and cementite nucleation and growth, was determined.

Info:

Periodical:

Solid State Phenomena (Volume 163)

Edited by:

Danuta Stróż & Małgorzata Karolus

Pages:

200-203

DOI:

10.4028/www.scientific.net/SSP.163.200

Citation:

P. Bała et al., "The Mössbauer Spectroscopy and X-Ray Diffraction Studies of Phase Transformation during Tempering in High-Carbon Tool Steel", Solid State Phenomena, Vol. 163, pp. 200-203, 2010

Online since:

June 2010

Export:

Price:

$38.00

[1] D.E. Kaputkin: Reversible martensitic transformation, ageing and low-temperature tempering of iron-carbon martensite. Mat. Sc. Eng. A 438-440 (2006), 207÷211.

DOI: 10.1016/j.msea.2006.02.182

[2] S. Murphy, A. Whiteman: The precipitation of epsilon-carbide in twinned martensite. Met. Trans. 1, (1970) 843-848.

[3] R. Padmanabhan, W.E. Wood: Precipitation of ε carbide in martensite. Mat. Sc. Eng. 65 (1984), 289÷297.

[4] J. Pacyna: The effect of retained austenite on the fracture toughness of high speed steels. Steel Res. 58 (1987) , 87÷92.

DOI: 10.1002/srin.198701591

[5] T.H. Yu, C.Y. Chen, J.R. Yang, Decomposition of Retained Austenite in a High-Speed Steel GPM A30. J. Mat. Eng. Per. 16 (2007), 102÷108.

DOI: 10.1007/s11665-006-9016-9

[6] R.W.K. Honeycombe, H. K. D. H. Bhadeshia: Steels. Microstructure and properties, 2nd ed. (1995) London: Edward Arnold.

[7] S. Nagakura, Y. Hirotsu, M. Kosunoki, T. Suzuki, Y. Nakamura: Crystallographic Study of the Tempering of Martensitic Carbon Steel by Electron Microscopy and Diffraction. Met. Trans. 14A (1983) , 1025÷1031.

DOI: 10.1007/bf02670441

[8] A. K. Sinha: Physical metallurgy handbook, The McGraw-Hill Companies (2003) , Inc.

[9] A. D. B. Gingell, H. K. D. H. Bhadeshia, D. G. Jones, K. J. A. Mawella: Carbide precipitation in some secondary hardened steels. J. Mat. Sc. 32 (1997) , 4815÷4820.

[10] P. Bała: Ph.D. Thesis, AGH University of Science and Technology, Krakow (2007).

[11] P. Bała, J. Pacyna, J. Krawczyk: The influence of the kinetics of phase transformations during tempering on the structure development in a high carbon steel. Archiv. Metall. Mater. 52, 113 120 (2007).

[12] V.A. Shabashov, L.G. Korshunov, A.G. Mukoseev, V.V. Sagaradze, A.V. Makarov, V.P. Pilyugin, S.I. Novikov, N.F. Vildanova: Deformation-induced phase transitions in a highcarbon steel. Mater. Sci. Eng. A346 (2003), 196-207.

DOI: 10.1016/s0921-5093(02)00549-x

[13] S. Skrzypek, E. Kolawa, J.A. Sawicki, T. Tyliszczak,: A study of the retained austenite phase transformation in low alloy steel using conversion electron Mössbauer spectroscopy and X-ray diffraction. Mater. Sci. Eng. 66 (1984), 145-149.

DOI: 10.1016/0025-5416(84)90176-9

[14] P. Grgac, R. Moravick, M. Kusy, I. Toth, M. Miglierini, E. Illekova: Thermal stability of metastable austenite in rapidly solidified chromium-molybdenum-vanadium tool steel powder. Mater. Sci. Eng. A375-377 (2004), 581-584.

DOI: 10.1016/j.msea.2003.10.036

[15] P.D. Bilmes, M. Solari, C.L. Liorente: Characteristics and effects of austenite resulting from tempering of 13CrNiMo martensitic steel weld metals. Mater. Charact. 46 (2001), 285-296.

DOI: 10.1016/s1044-5803(00)00099-1

[16] S. -J. Kown, S.J. Oh, J.H. Kim, S. Kim, S. Lee: Mössbauer analysis of heat affected zones of an sa 508 steel weld. Scr. Mater. 40 (1999), 131-137.

DOI: 10.1016/s1359-6462(98)00428-x

[17] V.G. Gavriljuk: Decomposition of cementite in pearlitic steel due to plastic deformation. Mater. Sci. Eng. A345 (2003), 81-89.

[18] R. Ilola, V. Nadutov, M. Valo, H. Hänninen,: On irradiation embrittlement and recovery annealing mechanisms of Cr-Mo-V type pressure vessel steels. J. Nucl. Mater. 302 (2002), 185-192.

DOI: 10.1016/s0022-3115(02)00780-8

[19] V.A. Shabashov, A.G. Mukoseev, V.V. Sagaradze: Formation of solid solution of carbon in BCC iron by cold deformation. Mater. Sci. Eng. A307 (2001), 91-97.

DOI: 10.1016/s0921-5093(00)01963-8

[20] P. Bała, J. Krawczyk, A. Hanc: The Mössbauer spectroscopy studies of ε to cementite carbides transformation during isothermal heating from as-quenched state of high carbon tool steel. Acta. Phys. Pol. A. 114 (2008), 1641-1650.

DOI: 10.12693/aphyspola.114.1641

[21] A-B Ma., T. Ando, D.L. Williamson, G. Krauss: Chi - carbide in tempered high carbon martensite. Metallurgical Transactions, vol. 14A, June 1983, p.1033.

DOI: 10.1007/bf02659852

In order to see related information, you need to Login.