Crystal Structure Analysis of the Mg2Si1-xSnx System Having Potential Thermoelectric Properties at High Temperature

Abstract:

Article Preview

Laves phases of C15 type of the system Mg2Si1-xSnx with x = 0, 0.4, 0.6 and 1 were synthesized in polycrystalline state in tantalum ampoule heated by high frequency coupling. The as-cast materials were analysed first at room temperature by X-ray diffraction (XRD). Systematically, XRD patterns were recorded up to 700 °C and Differential Scanning Calorimetry analysis was performed up to 1200°C to control the chemical and structural phase transformations. From these experiments, a C15 to C36 structure transformation was pointed out around 600°C in Mg2Si1-xSnx.solid solutions.

Info:

Periodical:

Solid State Phenomena (Volume 170)

Edited by:

J.-L. Bobet, B. Chevalier and D. Fruchart

Pages:

253-258

DOI:

10.4028/www.scientific.net/SSP.170.253

Citation:

D. Boudemagh et al., "Crystal Structure Analysis of the Mg2Si1-xSnx System Having Potential Thermoelectric Properties at High Temperature", Solid State Phenomena, Vol. 170, pp. 253-258, 2011

Online since:

April 2011

Export:

Price:

$38.00

[1] T.M. Tritt, Thermoelectric Materials Science 283 (1999) 804.

[2] T. Aizawa, R.B. Song and A. Yamamoto, Mater. Trans. JIM 46 (2005) 1490.

[3] A.J. Zhou, T.J. Zhu and X.B. Zhao, Mater. Sci. Eng. B 128 (2006) 174.

[4] H.L. Ni, T.J. Zhu and X.B. Zhao, Mater. Sci. Eng. B 117 (2005) 119.

[5] W. S. Cho, S. W. Choi and K. Park, Mater. Sci. Eng. B 68 (1999) 116.

[6] T. Aizawa and R.B. Song, Intermetallics 14 (2006) 382.

[7] R.P. Elliot and W. Rostocker, Transactions of American Society for Metal, 50 (1958) 617.

[8] F. Laves and K. Lohberg, Nachr. Gottinger Akad. Wiss., Math. Phys. Kl. IV Neue Folge, 1, 6 (1932) 59.

[9] F. Laves and H. Witte, Metallwirt., 14 (1935) 645.

[10] J.B. Friauf, Journal of the American Chemical Society, 49 (1927) 3107.

[11] J.B. Friauf, Physical. Review, 29 (1927) 34.

[12] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremdin, P.P. Konstantinov, A. Yu. Samunin, and M.V. Vedernikov, Phys. Rev., B 74 (2006) 045207.

DOI: 10.1103/physrevb.74.045207

[13] S. Bose, H.N. Acharya and H. D. Banerjee, J. Mater. Sci., 28 (1993) 5461.

[14] J. Tani and H. Kido, Intermetallics, 15 (2007) 1202.

[15] M. Akasaka, T. Lida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano and Y. Takanashi, J. Cryst. Growth, 304 (2007) 196.

[16] R.J. Labotz, D.R. Mason and D.F. O'Kane, J. Electrochem. Soc., 110 (1963) 127.

[17] Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I. A. Nishida and K. Masumoto, Mater. Trans. JIM 33 (1992) 845.

[18] J.E. Mahan, A. Vantomme, G. Langouche and J.P. Becker, Phys. Rev., B 54 (1996) 16965.

[19] L.M. Zhang, Y.G. Leng, H.Y. Jiang, L. D. Chen and T. Hirai, Proc. 20th Int. Conf. on Thermoelectrics, IEEE, Piscataway (2001) 233.

[20] V.K. Zaitsev, in CRC Handbook of Thermoelectrics, D.M. Rome (Ed), CRC Press, New York, 1995, 299.

[21] J. Tani and H. Kido, Physica, B 364 (2005) 218.

[22] T. Aizawa and R. Song, Intermetallics, 14 (2006) 382.

[23] L. Wang, X.Y. Qin, W. Xiong and X.G. Zhu, Mater. Sci. Eng., A 459 (2007) 216.

[24] J. Laugier and B. Bochu, CELREF V3, LMGP program library, Grenoble INP, France (2003).

[25] J. Rodriguez-Carvajal, FullProf V3. 5d, Program, Laboratoire L. Brillouin, Saclay, France (1998).

[26] I.H. Jung, D.H. Kang, W.J. Park, N.J. Kim and S.H. Ahn, Computer Coupling of Phase Diagrams and Thermochemistry, 31 (2007) 192.

[27] E.N. Nikitin, V.G. Bazanov and V.I. Tarasov, Sov. Phys. Solid State, 3 (1962) 2468.

[28] R.B. Song, T. Aizawa and J.Q. Sun, Materials Science and Engineering, B 136, 2-3 (2007) 111.

[29] K. Mars, L. Chaput, D. Fruchart, J. Tobola and H. Scherrer, Abstract €-MRS 2008 Spring Meeting, Symposium M, Strasbourg, France, (2008) 8.

[30] K. Mars, H. Ihou-Mouko, G. Pont, J. Tobola and H. Scherrer, J. of Electronic Materials 38, 7 (2009) 1360.

In order to see related information, you need to Login.