Organic Light Emitting Diodes: Effect of Annealing the Hole Injection Layer on the Electrical and Optical Properties


Article Preview

Organic Light Emitting Diodes (OLED) are receiving increased attention due to tremendous application potential these devices hold in the areas of large area displays and lighting applications. However, the problems of efficiency, stability and shelf life are major challenges for making OLEDs an attractive alternative. The simple device structure involving anode, emissive layer and cathode is no longer the norm. Recently, various buffer layers like Hole Injection Layer (HIL), Hole transport Layer (HTL), Electron Injection Layer (EIL), Electron Transport Layer (ETL) etc. are being widely used as integral parts of the OLED architecture to enhance the performance parameters. The nomenclature of these layers is often confusing and sometimes used by different authors to mean different layers and a common and universal nomenclature for layers is still wanting. Applying a buffer layer, often called as the hole injecting layer (HIL) between anode and emissive layer is a general technique for increasing the efficiency and stability of organic light emitting diodes. Poly- (3,4-ethyhylene dioxythiophene): poly- (styrenesulphonate) (PEDOT:PSS) is a very common and popular such HIL used in OLEDs. In this chapter, a basic structure of OLEDs has been discussed in perspective with this HIL material and the effect of annealing this PEDOT: PSS layer on the characteristics of the device at different temperatures ranging from 100°C to 300°C in vacuum. Devices fabricated in clean room conditions are characterized for their electrical and optical properties. Equivalent circuits of the devices are deduced using impedance spectroscopy and discussed. Surface morphology of the HIL layers using atomic force microscopy (AFM) provides reasons for the variation of the device properties with the annealing of HIL.



Solid State Phenomena (Volume 171)

Edited by:

R. K. Singhal




P. Predeep et al., "Organic Light Emitting Diodes: Effect of Annealing the Hole Injection Layer on the Electrical and Optical Properties", Solid State Phenomena, Vol. 171, pp. 39-50, 2011

Online since:

May 2011




[1] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, and A.B. Holmes: Nature Vol. 347 (1990), p.539.

[2] C. Tang and S. VanSlyke: Appl. Phys. Lett. Vol. 51 (1987), p.913.

[3] Liming Dai, Berthold Winkler, Limin Dong, Lin Tong and Albert W.H. Mau: Adv. Mater. Vol. 13 (2001), p.915.

[4] Chih-Wei Chu, Chieh-Wei Chen, Sheng-Han Li, Elbert Hsing-En Wu, and Yang Yang: Appl. Phys. Lett. Vol. 86 (2005), p.253503.


[5] J. Shinar and V. Savvateev: in: Organic Light Emitting Decvices (A Survey, Springer Verlag, New York, Chapter 1, 2004), p.1.

[6] Organic Light-Emitting Devices and Their Applications (Ed. Edited by Zhigang Li and Hong Meng, CRC Press Taylor & Francis Group 2007), p.6.

[7] A.R. Brown, K Pichler, N.C. Greenham, D.D.C. Bradley, R.H. Friend and A.B. Holmes: Chem. Phys. Lett. Vol. 210 1993, p.61.

[8] M.A. Baldo, D.F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest: Nature Vol. 395 (1998), p.151.

[9] T. Tsutsui, M.J. Yang, M. Yahiro, K. Nakamura, T. Watanabe, T. Tsuji, Y. Fukuda, T. Wakimoto, and S. Miyaguchi: Jpn. J. Appl. Phys. Vol. 38 (1999), p. L1502.


[10] C. Adachi, M.A. Baldo, and S.R. Forrest: J. Appl. Phys. Vol. 87 (2000), p.8049.

[11] Jianyong Ouyang, Chi-Wei Chu, Fang-Chung Chen, Qianfei Xu, and Yang Yang: J. Macromol. Sci. Part A Pure Appl. Chem. Vol. 41(12) (2004), p.1497.


[12] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki: J. Appl. Phys. Vol. 87 (2000), p.295.

[13] F. Li, H. Tang, J. Shinar, O. Resto, and S.Z. Weisz: Appl. Phys. Lett. Vol. 70 (1997), p.2741.

[14] M. Ishii, T. Mori, H. Fujikawa, S. Tokito, and Y. Taga: J. Lumin. Vol. 87-89 (2000), p.1165.

[15] I. Parker: J. Appl. Phys., Vol. 75 (1994), p.1656.

[16] Y. Yang, E. Westerweele, C. Zhang, P. Smith and A.J. Heeger: J. Appl. Phys. Vol. 77 (1995), p.694.

[17] S.T. Lee, Z.Q. Gao and L.S. Hung: Appl. Phys. Lett. Vol. 75 (1999), p.1404.

[18] Y. Kurosaka, N. Tada, Y. Ohmori and K. Yoshino: Jpn. J. Appl. Phys. Vol. 37 (1998), p. L872.

[19] Z.B. Deng, X.M. Ding, S.T. Lee and W.A. Gambling: Appl. Phys. Lett. Vol. 74 (1999), p.2227.

[20] C. Qiu, H. Chen, Z. Xie, M. Wong and H.S. Kwok: Appl. Phys. Lett. Vol. 80 (2002), p.3485.

[21] H. Jiang, Y. Zhou, B.S. Ooi, Y. Chen, T. Wee, Y.L. Lam, J. Huang and S. Liu: Thin Solid Films, Vol. 363 (2000), p.25.

[22] Y. Qiu, Y. Gao, L. Wang, and D. Zhang: Synth. Met. Vol. 130 (2002), p.235.

[23] F. Zhu, B.L. Low, K. Zhang and S.J. Chua, Appl. Phys. Lett., Vol. 79 (2001), p.1205.

[24] Wolfgang Brutting, Stefan Berleb, Anton G. Muckl: Org. Electron. Vol. 2 (2001), p.1.

[25] P.S. Davids, Sh.M. Kogan, I.D. Parker, and D.L. Smith: Appl. Phys. Lett., vol. 69 (1996), p.2270.

[26] L. S. Roman, M. Berggren, and O. Ingana: Appl. Phys. Lett. Vol. 75 (1999), p.3557.

[27] S. Alem, R. de Bettignies, J.M. Nunzi, and M. Cariou: Appl. Phys. Lett. Vol. 84 (2004), p.2178.

[28] P.W.M. Blom and Marc J.M. de Jong: IEEE J. Quant. Elec. Vol. 4(1) (1998).

[29] J.R. MacDonald: in: Impedance Spectroscopy. Emphasizing Solid Materials and Systems, (John Wiley & Sons, New York, 1987).

[30] Vishal Shotriya and Yang Yang: J. Appl. Phys. Vol. 97 (2005), p.054504.

[31] A. Van Dijken, A. Perro, E.A. Meulenkamp and K. Brunner : Org. Electron. Vol. 4 (2003), p.131.

[32] L. A. A. Pettersson, S. Ghosh, and O. Ingana: Org. Eectron. Vol. 3 (2002), p.143.

Fetching data from Crossref.
This may take some time to load.