Phase-field Model for Diffusional Phase Transformations in Elastically Inhomogeneous Polycrystals


Article Preview

A phase-field model is described for predicting the diffusional phase transformation process in elastically inhomogeneous polycrystals. The elastic interactions are incorporated by solving the mechanical equilibrium equation using the Fourier-spectral iterative-perturbation scheme taking into account elastic modulus inhomogeneity. A number of examples are presented, including grain boundary segregation, precipitation of second-phase particles in a polycrystal, and interaction between segregation at a grain boundary and coherent precipitates inside grains. It is shown that the local pressure distribution due to coherent precipitates leads to highly inhomogeneous solute distribution along grain boundaries.



Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson




T. W. Heo et al., "Phase-field Model for Diffusional Phase Transformations in Elastically Inhomogeneous Polycrystals", Solid State Phenomena, Vols. 172-174, pp. 1084-1089, 2011

Online since:

June 2011




[1] M.P. Seah: J. Phys. F: Metal Physics Vol. 10 (1980), p.1043.

[2] T. Kinoshita, S. Munekawa and S. -I. Tanaka: Acta mater. Vol. 45 (1997), p.801.

[3] L. Heatherly and E. P. George: Acta mater. Vol. 49 (2001), p.289.

[4] T. Kinoshita and S. Munekawa: Acta mater. Vol. 45 (1997), p. (2001).

[5] L. Q. Chen: Annu. Rev. Mater. Res. Vol. 32 (2002), p.113.

[6] W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma: Annu. Rev. Mater. Res. Vol. 32 (2002), p.163.

[7] L. Granasy, T. Pusztai, T. Borzsonyi, G. Toth, G. Tegze, J. A. Warren and J. F. Douglas: J. Mater. Res. Vol. 21 (2006), p.309.

[8] H. Emmerich: Adv. Phys. Vol. 57 (2008) p.1.

[9] N. Moelans, B. Blanpain and P. Wollants: Comput. Coupling Phase Diagr. Thermochem. Vol. 32 (2008), p.268.

[10] I. Steinbach: Modelling Simul. Mater. Sci. Eng. Vol. 17 (2009), p.073001.

[11] J. W. Cahn: Acta Metall. Vol. 9 (1961), p.795.

[12] S. M. Allen and J. W. Cahn: Acta Metall. Vol. 27 (1979), p.1085.

[13] S. Bhattacharyya, T. W. Heo, K. Chang and L. Q. Chen: submitted to Commun. Comput. Phys. (2010).

[14] S. Y. Hu and L. Q. Chen: Acta mater. Vol. 49 (2001), p.1879.

[15] P. Yu, S. Y. Hu, L. Q. Chen and Q. Du: J. Comput. Phys. Vol. 208 (2005), p.34.

[16] D. Y. Li and L. Q. Chen: Acta Mater. Vol. 45 (1997), p.2435.

[17] A. G. Khachaturyan: Theory of Structural Transformations in Solids (John-Wiley and Sons, New York 1983).

[18] L. Q. Chen and W. Yang: Phys. Rev. B Vol. 50 (1994), p.15752.

[19] L. Q. Chen and J. Shen: Comput. Phys. Commun. Vol. 108 (1998), p.147.

[20] J. Zhu, L. Q. Chen, J. Shen and V. Tikare: Phys. Rev. E Vol. 60 (1999), p.3564.

[21] R. W. Balluffi, S. M. Allen and W. C. Carter: Kinetics of Materials (John-Wiley and Sons, New Jersey, 2005).

[22] S. Y. Hu and L. Q. Chen: Acta mater. Vol. 49 (2001), p.463.