Phase-field Model for Diffusional Phase Transformations in Elastically Inhomogeneous Polycrystals

Abstract:

Article Preview

A phase-field model is described for predicting the diffusional phase transformation process in elastically inhomogeneous polycrystals. The elastic interactions are incorporated by solving the mechanical equilibrium equation using the Fourier-spectral iterative-perturbation scheme taking into account elastic modulus inhomogeneity. A number of examples are presented, including grain boundary segregation, precipitation of second-phase particles in a polycrystal, and interaction between segregation at a grain boundary and coherent precipitates inside grains. It is shown that the local pressure distribution due to coherent precipitates leads to highly inhomogeneous solute distribution along grain boundaries.

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson

Pages:

1084-1089

Citation:

T. W. Heo et al., "Phase-field Model for Diffusional Phase Transformations in Elastically Inhomogeneous Polycrystals", Solid State Phenomena, Vols. 172-174, pp. 1084-1089, 2011

Online since:

June 2011

Export:

Price:

$38.00

[1] M.P. Seah: J. Phys. F: Metal Physics Vol. 10 (1980), p.1043.

[2] T. Kinoshita, S. Munekawa and S. -I. Tanaka: Acta mater. Vol. 45 (1997), p.801.

[3] L. Heatherly and E. P. George: Acta mater. Vol. 49 (2001), p.289.

[4] T. Kinoshita and S. Munekawa: Acta mater. Vol. 45 (1997), p. (2001).

[5] L. Q. Chen: Annu. Rev. Mater. Res. Vol. 32 (2002), p.113.

[6] W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma: Annu. Rev. Mater. Res. Vol. 32 (2002), p.163.

[7] L. Granasy, T. Pusztai, T. Borzsonyi, G. Toth, G. Tegze, J. A. Warren and J. F. Douglas: J. Mater. Res. Vol. 21 (2006), p.309.

[8] H. Emmerich: Adv. Phys. Vol. 57 (2008) p.1.

[9] N. Moelans, B. Blanpain and P. Wollants: Comput. Coupling Phase Diagr. Thermochem. Vol. 32 (2008), p.268.

[10] I. Steinbach: Modelling Simul. Mater. Sci. Eng. Vol. 17 (2009), p.073001.

[11] J. W. Cahn: Acta Metall. Vol. 9 (1961), p.795.

[12] S. M. Allen and J. W. Cahn: Acta Metall. Vol. 27 (1979), p.1085.

[13] S. Bhattacharyya, T. W. Heo, K. Chang and L. Q. Chen: submitted to Commun. Comput. Phys. (2010).

[14] S. Y. Hu and L. Q. Chen: Acta mater. Vol. 49 (2001), p.1879.

[15] P. Yu, S. Y. Hu, L. Q. Chen and Q. Du: J. Comput. Phys. Vol. 208 (2005), p.34.

[16] D. Y. Li and L. Q. Chen: Acta Mater. Vol. 45 (1997), p.2435.

[17] A. G. Khachaturyan: Theory of Structural Transformations in Solids (John-Wiley and Sons, New York 1983).

[18] L. Q. Chen and W. Yang: Phys. Rev. B Vol. 50 (1994), p.15752.

[19] L. Q. Chen and J. Shen: Comput. Phys. Commun. Vol. 108 (1998), p.147.

[20] J. Zhu, L. Q. Chen, J. Shen and V. Tikare: Phys. Rev. E Vol. 60 (1999), p.3564.

[21] R. W. Balluffi, S. M. Allen and W. C. Carter: Kinetics of Materials (John-Wiley and Sons, New Jersey, 2005).

[22] S. Y. Hu and L. Q. Chen: Acta mater. Vol. 49 (2001), p.463.

Fetching data from Crossref.
This may take some time to load.