Theoretical Investigation of Alloy Phase Equilibria by Continuous Displacement Cluster Variation Method

Abstract:

Article Preview

Continuous Displacement Cluster Variation Method is employed to study binary phase equilibria on the two dimensional square lattice with Lennard-Jones type pair potentials. It is confirmed that the transition temperature decreases significantly as compared with the one obtained by conventional Cluster Variation Method. This is ascribed to the distribution of atomic pairs in a wide range of atomic distance, which enables the system to attain the lower free energy. The spatial distribution of atomic species around a Bravais lattice point is visualized. Although the average position of an atom is centred at the Bravais lattice point, the maximum pair probability is not necessarily attained for the pairs located at the neighboring Bravais lattice points. In addition to the real space information, k-space information are calculated in the present study. Among them, the diffuse intensity spectra due to short range ordering and atomic displacement are discussed.

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson

Pages:

1119-1127

Citation:

T. Mohri, "Theoretical Investigation of Alloy Phase Equilibria by Continuous Displacement Cluster Variation Method", Solid State Phenomena, Vols. 172-174, pp. 1119-1127, 2011

Online since:

June 2011

Authors:

Export:

Price:

$38.00

[1] R. Kikuchi: Phys. Rev. 81 (1951), p.998.

[2] see for instance, Tetsuo Mohri, in Alloy Physics, Chapt. 10 and references therein, (ed. W. Pfeiler, WILEY-VCH 2007), pp.525-588.

[3] T. Mohri, K. Terakura, T. Oguchi and K. Watanabe: Acta metall. 36 (1988), p.547.

[4] T. Mohri, K. Terakura, S. Takizawa and J.M. Sanchez: Acta. metall. 39 (1991), p.493.

[5] T. Mohri and Y. Chen: Mat. Trans. 45( 2004), p.1478.

[6] T. Mohri and Y. Chen: J. Alloys Comp. 383(2004), p.23.

[7] T. Mohri, K. Nakamura and T. Ito: J. Appl. Phys. 70 (1991), p.1320.

[8] Kohji Nakamura and Tetsuo Mohri: Modelling and Simul. Mater. Sci. Eng., 1 (1993), p.19.

[9] T. Mohri and W.A. Oates: Journal of Alloys and Compounds 330-332 (2002), p.14.

[10] Tetsuo Mohri and W.A. Oates: Materials Trans. 43 (2002), p.2656.

[11] T. Mohri, K. Terakura, T. Oguchi and K. Watanabe: in Phase Transformation '87, (ed. G. W. Lorimer, The Institute of Metals 1988), p.433.

[12] Tetsuo Mohri, Tomohiko Morita, Naoya Kiyokane and Hiroaki Ishii: Journal of Phase Equilibria and Diffusion, 30 (2009), p.553.

DOI: https://doi.org/10.1007/s11669-009-9571-5

[13] V. Morruzi, J.F. Janak and K. Schwarz: Phys. Rev. B 37 (1988), p.790.

[14] W.L. Bragg and E.J. Williams: Proc. Roy. Soc. A145 (1934), p.699.

[15] R. Kikuchi: J. Phase. Equilibria 19 (1998), p.412.

[16] R. Kikuchi, and A. Beldjenna: Physica A182 (1992), p.617.

[17] R. Kikuchi and K. Masuda-Jindo: Comp. Mater. Sci. 14 (1999), p.295.

[18] A. Finel and R. Tetot: in Stability of Materials (ed. By A. Gonis, P.E.A. Turchi and J. Kudrnovsky, Plenum Press, New York, 1996), p.197.

[19] H. Uzawa, and T. Mohri: Mater. Trans. 42 (2001), p.422.

[20] H Uzawa and T. Mohri: Mater. Trans. 43 (2002), p.2185.

[21] T. Mohri: International Journal of Materials Research 100(2009), p.301.

[22] Tetsuo Mohri: Materials Trans. Vol. 49 (2008), p.2515.

[23] H Uzawa: Ph. D thesis, Hokkaido University (2003) *in Japanese.

[24] B. Borie and C. J. Sparks, Jr., Acta Cryst. A27 (1971), p.198.

[25] B. Borie, Acta Cryst. 10 (1957), p.89.

[26] J.M. Sanchez, Physica 111A (1982), 200.

[27] T. Mohri, J.M. Sanchez and D. de Fontaine: Acta Metall. 33 (1985), p.1463.

[28] D. de Fontaine, Acta Metal. 23 (1975), p.553.