Modeling of Growth and Dissolution of Grain Boundary Cementite in Vacuum Carburizing Process


Article Preview

In order to predict microstructures during vacuum carburizing, the model which simulates not only the carbon(C) diffusion but also growth/dissolution of cementite(θ) is required. For development of a new model we applied vacuum carburizing to low alloy steels and analyzed the distribution of C and θ by GD-OES and image analysis of microstructures. The C in retained austenite(γ) phase after carburizing was also measured by lattice constants obtained from XRD. We also simulated multi-component diffusion with γ matrix and θ layer to analyze a velocity of the moving interface. The new carburizing model was proposed based on the findings, which suggest that C in γ phase at the carburizing surface is supersaturated and corresponds to C concentration for metastable equilibrium condition to graphite. The growth and dissolution of the θ follow a square root of time with the coefficients controlled by diffusion of Si in γ and Cr in θ respectively. The required parameters such as diffusivity coefficients are obtained by the CALPHAD method. The calculated C distributions and volume fractions of θ represent the experimental results.



Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson






H. Ikehata et al., "Modeling of Growth and Dissolution of Grain Boundary Cementite in Vacuum Carburizing Process", Solid State Phenomena, Vols. 172-174, pp. 1177-1182, 2011

Online since:

June 2011




In order to see related information, you need to Login.