Structural Characterization of Reaction Product Region in Al/MgO and Al/MgAl2O4 Systems


Article Preview

The reaction product region, formed between molten aluminium and MgO and MgAl2O4 single crystals of three different crystallographic orientations, was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectrometry (EDS). The Al/MgO and Al/MgAl2O4 couples were produced under ultra high vacuum at 800, 900 and 1000°C. The observations proved the redox reactions of Al with both MgO and MgAl2O4. Independently of crystallographic orientation of initial oxide single crystals, the reaction product region (RPR) was formed and it was built of oxide particles surrounded by continuous metallic phase. For Al/MgO couples, the RPR was composed of two layers, where in the first layer, the oxide phase was Al2O3 while in the second layer, the MgAl2O4 was identified. In the case of Al/MgAl2O4 couples, a single layer was distinguished and only the Al2O3 phase was recognized.



Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson




R. Nowak et al., "Structural Characterization of Reaction Product Region in Al/MgO and Al/MgAl2O4 Systems", Solid State Phenomena, Vols. 172-174, pp. 1273-1278, 2011

Online since:

June 2011




[1] N. Sobczak, J. Schmidt, A. Kazakov, Patent PL-166953, 26. 07. (1991).

[2] N. Sobczak, M. Ksiazek, W. Radziwill, J. Morgiel, W. Baliga, L. Stobierski, Proc. High Temperature Capillarity, Foundry Research Institute, Poland (1997) 138.

[3] H.J. Scheel, J. Cryst. Growth 211 (2000) 1.

[4] D.R. Clarke, Interpenetrating Phase Composites: Report of the Snowmass Workshop, J. Amer. Cer. Soc. 75.

[4] (1992) 739.

[5] M.C. Breslin, J. Ringnalda, L. Xu, M. Fuller, J. Seeger, G.S. Daehn, T. Otani, H.L. Fraser, Mater. Sci. Eng. A, 195.

[1] (1995) 113.

[6] W. Liu, U. Köster, Scripta Mater. 35.

[1] (1996) 35.

[7] M.C. Breslin, J. Ringnalda, J. Seeger, A.L. Marasco, G.S. Daehn, H.L. Fraser, Cer. Eng. Sci. Proc. 5.

[4] (1994) 104.

[8] R.E. Loehman, K.G. Ewsuk, A. Tomsia, J. Amer. Cer. Soc. 79.

[1] (1996) 27.

[9] N. Sobczak, in Bulk and Graded Nanometals, K.J. Kurzydlowski and Z. Pakiela (Eds. ), Solid State Phen., 101-102 (2005) 221.

[10] N. Sobczak, L. Stobierski, M. Ksiazek, W. Radziwill, R. Nowak, A. Kudyba, Ceramika 80 (2003) 831.

[11] N. Sobczak, in Innowacje w odlewnictwie, Instytut Odlewnictwa, vol. 1 (2007) 187.

[12] R. Nowak, N. Sobczak, W. Radziwill, A. Kudyba, E. Sienicki, in Innowacje w odlewnictwie, Instytut Odlewnictwa, vol. 2 (2008) 225.

[13] L. Ceschini, G. Minak, A. Morri, Comp. Sci. Tech. 66 (2006) 333.

[14] S. Antolin, A.S. Nagelberg, D.K. Creber, J. Amer. Cer. Soc. 75.

[2] (1992) 447.

[15] K. Grjotheim, O. Herstad, J.M. Toguri, Canad. J. Chem. 39 (1961) 443.

[16] D.R. Giese, F.J. Lamelas, H.A. Owen, R. Plass, M. Gajdardziska-Josifovska, Surf. Sci. 457 (2000) 326.

[17] R. Nowak, N. Sobczak, A. Kudyba, W. Radziwill, E. Sienicki, in Innowacje w odlewnictwie, Instytut Odlewnictwa, vol. 3 (2009) 89.

Fetching data from Crossref.
This may take some time to load.