FIB/SEM Applied to Quantitative 3D Analysis of Precipitates in Ni-Ti


Article Preview

Ni4Ti3 precipitates with a heterogeneous distribution growing in a polycrystalline Ni50.8Ti49.2 alloy have been investigated in a Dual-Beam FIB/SEM system. The volume ratio, mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured or calculated. The morphology of the precipitates was classified according to the Zingg scheme. The multistage martensitic transformation occurring in these kinds of samples is interpreted in view of the data of this heterogeneous microstructure of matrix and precipitates.



Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson




S. S. Cao et al., "FIB/SEM Applied to Quantitative 3D Analysis of Precipitates in Ni-Ti", Solid State Phenomena, Vols. 172-174, pp. 1284-1289, 2011

Online since:

June 2011




[1] K. Otsuka, X. Ren, Progress in Materials Science Vol. 50 (2005), p.511.

[2] S. Cao, W. Tirry, W. Van den Broek, D. Schryvers, Mater. Sci. Forum Vol. 583 (2008), p.277.

[3] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Acta Materialia Vol. 50 (2002), p.4255.

[4] M. Nishida, T. Hara, T. Ohba, K. Yamaguchi, K. Tanaka, K. Yamauchi, Materials Transactions Vol. 44 (2003), p.2631.

[5] K. Fujishima, M. Nishida, Y. Morizono, K. Yamaguchi, K. Ishiuchi, T. Yamamuro, Materials Science and Engineering: A Vol. 438-440 (2006), p.489.

[6] D. Y. Li, L. Q. Chen, Acta Materialia Vol. 45 (1997), p.2435.

[7] S. Cao, C. Somsen, M. Croitoru, D. Schryvers, G. Eggeler, Scripta Materialia Vol. 62 (2010), p.399.

[8] J. Michutta, M. C. Carroll, A. Yawny, C. Somsen, K. Neuking, G. Eggeler, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing Vol. 378 (2004), p.152.


[9] J. Michutta, C. Somsen, A. Yawny, A. Dlouhy, G. Eggeler, Acta Materialia Vol. 54 (2006), p.3525.


[10] W. Tang, Metallurgical and Materials Transactions A Vol. 28 (1997), p.537.

[11] L. Bataillard, J. E. Bidaux, R. Gotthard, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties Vol. 78 (1998), p.327.

[12] A. Dlouhy, J. Khalil-Allafi, G. Eggeler, Philosophical Magazine Vol. 83 (2003), p.339.

[13] G. Fan, W. Chen, S. Yang, J. Zhu, X. Ren, K. Otsuka, Acta Materialia Vol. 52 (2004), p.4351.

[14] J. Khalil Allafi, X. Ren, G. Eggeler, Acta Materialia Vol. 50 (2002), p.793.

[15] J. Khalil-Allafi, G. Eggeler, A. Dlouhy, W. W. Schmahl, C. Somsen, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing Vol. 378 (2004), p.148.

[16] M. Nishida, N. Kizakibaru, M. Matuda, Determination of transformation site of multistage martrensitic transformation (MMT) in aged Ni-rich Ti-Ni alloys in: ICOMAT-08, Santa Fe, New Mexico, USA, (2008).

[17] L. Holzer, F. Indutnyi, P. H. Gasser, B. Munch, M. Wegmann, Journal of Microscopy-Oxford Vol. 216 (2004), p.84.

[18] S. Cao, W. Tirry, W. Van Den Broek, D. Schryvers, Journal of Microscopy Vol. 233 (2009), p.61.

[19] L. A. Giannuzzi, F. A. Stevie, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice Springer, New York, USA, (2004).

[20] W. H. Walton, Nature 162 (1948), p.329.

[21] H. Wadell, The Journal of Geology 43 (1935) 250-280.

[22] C. B. Ke, X. Ma, X. P. Zhang, Acta Metallurgica Sinica 46 (2010), p.84.

[23] R. A. Karnesky, C. K. Sudbrack, D. N. Seidman, Scripta Materialia Vol. 57 (2007), p.353.

[24] M. E. Tucker, Einführung in die Sedimentpetrologie, Stuttgart, (1985).

[25] S. Cao, M. Nishida, D. Schryvers, Acta Materialia (accepted for publication).

[26] N. Zhou, C. Shen, M.F. -X. Wagner, G. Eggeler, M.J. Mills, Y. Wang, Acta Materialia 58 (2010) 6685-6694.

[27] W. Tirry, D. Schryvers, Nature Materials 8 (2009) 752-757.