Evolution of Ar Implanted Amorphous Silicon Dioxide under High Voltage Electron Beam

Abstract:

Article Preview

Amorphous silicon dioxide layers were implanted with 100 keV Ar ions to a relatively high fluence in a tentative to generate cavities in the oxide. Different oxide layers were used, obtained either by thermally growth or by chemical vapor deposition (CVD) on Si substrate. In all SiO2 layers, cavities are not formed in the as-implanted state. However, in the transmission electron microscope, under electron beam, the combined effect of irradiation induced defects and implanted rare gas leads to the formation of cavity bands giving the unique opportunity to observed in-situ cavity growth. The cavity morphology and their distribution are found to be dependent on the silicon dioxide growth process. For thermally grown SiO2 layer, a homogeneous cavity band is formed, centered at the mean ion path, with an average cavity size of 20 nm. For CVD SiO2 layer, slightly smaller cavities are formed in two distinct bands. The formation of cavities is discussed in light of gas and defects interaction and field-induced migration whereas the cavity distribution is discussed in terms of self-organization.

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson

Pages:

697-702

DOI:

10.4028/www.scientific.net/SSP.172-174.697

Citation:

E. Oliviero et al., "Evolution of Ar Implanted Amorphous Silicon Dioxide under High Voltage Electron Beam", Solid State Phenomena, Vols. 172-174, pp. 697-702, 2011

Online since:

June 2011

Export:

Price:

$35.00

[1] Materials Challenges for Advanced Nuclear Energy Systems, MRS Bulletin 34 (2009) pp.1-53.

[2] D. M. Follstaedt, S. M. Myers, C. A. Petersen, and J. W. Medernach, J. Electron. Mater. 25 (1996) pp.157-164.

[3] H. Trinkaus, B. Hollander, S. Rongen, S. Mantl, H. J. Herzog, J. Kuchenbecker, and T. Hackbarth, Appl. Phys. Lett. 76 (2000) pp.3552-3554.

DOI: 10.1063/1.126704

[4] M. Bruel, Mater. Res. Innovations 3 (1999) 9-13.

[5] E. Oliviero, M.L. David and P.F.P. Fichtner, Phys. Status Solidi C 6 (2009) 1969-(1973).

[6] S. E. Donnelly and J. H. Evans, Fundamental Aspects of Inert Gases in Solids, NATO ASI Series B: Physics Vol. 279, Plenum, New York, (1991).

DOI: 10.1007/978-1-4899-3680-6

[7] J. H. Evans, Nucl. Instr. and Meth. B 196 (2002) 125-134.

[8] H. Assaf-Reda, PhD thesis, Orléans University (2006).

[9] E. Oliviero et al., Micropor. Mesopor. Mat. 132 (2010) 163-173.

[10] For details of the ion implantation system see: http: /semiramis. in2p3. fr.

[11] J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

[12] C. Fiori and R.A. B Devine, Phys. Rev. Lett. 52 (1984) (2081).

[13] G. Buscarino, S. Agnello and F.M. Gelardi, EPL 87 (2009) 26007.

[14] G.S. Chen, C.B. Boothroyd and C.J. Humphreys, Phil. Mag. A 78 (1998) 491-506.

[15] J. Cazaux, J. Appl. Phys. 59 (1986) 1418.

[16] M.A. Stevens Kalceff, Phys. Rev. B 57 (1998) 5674.

[17] M.L. Knotek, Rep. Prog. Phys. 47 (1984) 1499.

[18] E. Oliviero, B. Décamps, M.O. Ruault, O. Kaitasov and E. Ntsoenzok, in Proceedings of the first workshop on the use of in-situ TEM/ion accelerator techniques in the study of radiation damage in solids, edited by J.A. Hinks and S.E. Donnelly (Lulu Press, Morisville, 2010), 70-75.

[19] V.A. Borodin, K.H. Heinig and S. Reiss, Phys. Rev. B 56 (1997) 5332.

In order to see related information, you need to Login.