Dependence of Vacancy-Solute Interactions on Magnetic State in Dilute Iron-Based Alloys


Article Preview

Vacancy-solute interactions play a crucial role in diffusion-controlled phase transformations, such as ordering or decomposition, which occur in alloys under heat treatment or under irradiation. The knowledge of these interactions is important for predicting long-term behavior of nuclear materials (such as reactor steels and nuclear-waste containers) under irradiation, as well as for advancing our general understanding of kinetic processes in alloys. Using first-principles calculations based on density functional theory and employing the locally self-consistent Green’s function technique, we develop a database of vacancy-solute interactions in dilute alloys of bcc Fe with 3p (Al, Si, P, S), 3d (Ti – Cu), and 4d (Nb – Ag) elements. Interactions within the first two coordination shells have been computed in the ferromagnetic state as well as in the paramagnetic (disordered local moment) state of the iron matrix. Magnetism is found to have a very strong effect on the vacancy-solute interactions.



Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson




O. I. Gorbatov et al., "Dependence of Vacancy-Solute Interactions on Magnetic State in Dilute Iron-Based Alloys", Solid State Phenomena, Vols. 172-174, pp. 979-984, 2011

Online since:

June 2011




[1] R.L. Klueh and A.T. Nelson. Journal of Nuclear Materials 371, 37 (2007).

[2] O.I. Gorbatov, A.V. Ruban, P.A. Korzhavyi, Yu.N. Gornostyrev. Mater. Res. Soc. Symp. Proc. 1193, 469 (2009).

[3] F. Soisson and C. -C. Fu, Phys. Rev. B 76, 214102 (2007).

[4] P. Ehrhart, P. Jung, H. Schultz, and H. Ullmaier, in Atomic Defects in Metals, edited by H. Ullmaier, Landolt-Börnstein, New Series, Group III, Vol. 25 (Springer-Verlag, Berlin, 1991).


[5] P.A. Korzhavyi, A.V. Ruban, J. Odqvist, J.O. Nilsson, B. Johansson. Phys. Rev. B 79, 054202 (2009).

[6] I.A. Abrikosov, A.M.N. Niklasson, S.I. Simak, B. Johansson, A.V. Ruban, H.L. Skriver. Phys. Rev. Lett. 76, 22, 4203 (1996).

[7] I.A. Abrikosov, S.I. Simak, B. Johansson, A.V. Ruban, H.L. Skriver. Phys. Rev. B 56, 9319 (1997).

[8] J.P. Perdew, K. Burke, and M. Ernzerhof , Phys. Rev. Lett. 77, 3865 (1996).

[9] A.V. Ruban and I.A. Abrikosov, Rep. Prog. Phys. 71, 046501 (2008).

[10] H.L. Skriver an N.M. Rosengaard , Phys. Rev. B 43, 9538 (1991).

[11] P.A. Korzhavyi, I.A. Abrikosov, B. Johansson, A.V. Ruban, H.L. Skriver, Phys. Rev. B 59, 11693 (1999).

[12] C. Domain, C. S. Becquart. Phys. Rev. B 71, 214109 (2005).

[13] B.L. Gyorffy, A.J. Pindor, J.B. Stauton, G.M. Stocks, H. Winter, J Phys. F 15, 1337 (1985).

[14] V. Yu. Irkhin, Yu.P. Irkhin. Electronic structure, correlation effects and physical properties of d- and f-metals and their compounds (Cambridge International Science Publishing Ltd, 2007).

[15] U. Klemradt, B. Drittler, T. Hoshino, R. Zeller, and P. H. Dederichs, N. Stefanou. Phys. Rev. B 43, 9487 (1991).


[16] J. Friedel. Canad. J. Phys. 34, 1190 (1956).

[17] A. Möslang, E. Albert, E. Recknagel, A. Weidinger, and P. Moser. Hyperfine Interactions 15/16, 409 (1983).

[18] Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa, M. Hasegawa, Phys. Rev. B 67, 224202 (2003); Y. Nagai, Z. Tang, M. Hassegawa, T. Kanai, M. Saneyasu, Phys. Rev. B 63, 134110 (2001).


[19] T. Ohnuma, N. Soneda, M. Iwasawa, Acta Materialia 57, 5947 (2009).

[20] E. Vincent, C.S. Becquart, C. Domain. Nuclear Instruments and Methods in Physics Research B 228. 137 (2005).

[21] P. Olsson, T.P.C. Klaver, and C. Domain. Phys. Rev. B 81, 054102 (2010).

[22] M.M. Kijek, D.W. Palmer, Mater. Sci. For. 15-18, 703 (1987).

[23] S. Huang, D.L. Worthington, M. Asta, V. Ozolins, G. Ghosh, P.K. Liaw, Acta Materialia 58, 1982 (2010).

Fetching data from Crossref.
This may take some time to load.