Microstructural and Crystallographic Characteristics of Deformation-Induced Martensite Formed in Cold-Drawn 316 Type Stainless Steel

Abstract:

Article Preview

Deformation-induced martensite preferentially nucleates at the twin boundary between matrix austenite and deformation twin in 316 type stainless steel. In the cold-rolled specimen, the martensite formed at the twin boundary has K-S relationships with both of the austenite matrix and the deformation twin, that is, “double K-S relationship” is realized. While in the case of cold-drawn specimen, two kinds of twins with different twin planes are typically observed, and therefore, the deformation-induced martensites are formed at the intersections of the two deformation twin boundaries, satisfying “triple K-S relationship” among austenite matrix and two deformation twins, although there is a small misfit from the perfect K-S relationship. The complicated crystallographic orientation relationship leads to a strong variant restriction for deformation-induced martensites. Due to the difference in the number of nucleation sites, martensitic transformation is greatly promoted in cold-drawn specimen rather than cold-rolled one.

Info:

Periodical:

Solid State Phenomena (Volumes 172-174)

Edited by:

Yves Bréchet, Emmanuel Clouet, Alexis Deschamps, Alphonse Finel and Frédéric Soisson

Pages:

99-104

DOI:

10.4028/www.scientific.net/SSP.172-174.99

Citation:

N. Nakada et al., "Microstructural and Crystallographic Characteristics of Deformation-Induced Martensite Formed in Cold-Drawn 316 Type Stainless Steel", Solid State Phenomena, Vols. 172-174, pp. 99-104, 2011

Online since:

June 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.