Towards the Tailoring of P Diffusion Gettering to As-Grown Silicon Material Properties


Article Preview

The evolution of Fe-related defects is simulated for di erent P di usion gettering (PDG) processes which are applied during silicon solar cell processing. It is shown that the introduction of an extended PDG is bene cial for some as-grown Si materials but not essential for all of them. For mc-Si wafers with an as-grown Fe concentration 14 cm3, a good reduction of the Fei concentration and increase of the electron lifetime is achieved during standard PDG. For mc-Si wafers with a higher as-grown Fe concentration the introduction of defect engineering tools into the solar cell process seems to be advantageous. From comparison of standard PDG with extended PDG it is concluded that the latter leads to a stronger reduction of highly recombination active Fei atoms due to an enhanced segregation gettering e ect. For an as-grown Fe concentration between 1014 cm3 and 1015 cm3, this enhanced Fei reduction results in an appreciable increase in the electron lifetime. However, for an as-grown Fe concentration >1015 cm3, the PDG process needs to be optimized in order to reduce the total Fe concentration within the wafer as the electron lifetime after extended PDG keeps being limited by recombination at precipitated Fe.



Solid State Phenomena (Volumes 178-179)

Edited by:

W. Jantsch and F. Schäffler




J. Hofstetter et al., "Towards the Tailoring of P Diffusion Gettering to As-Grown Silicon Material Properties", Solid State Phenomena, Vols. 178-179, pp. 158-165, 2011

Online since:

August 2011




[1] A. Istratov, H. Hieslmair, E.R. Weber, Appl. Phys. A 69 (1999) 13-44.

[2] B. L. Sopori, L. Jastrzebski, T. Tan, in: Proc. 25th IEEE PVSC, Washington, D.C., 1996, p.625.

[3] T. U. Nærland, L. Arnberg, A. Holt, Prog. Photovoltaics res. appl. 17 (2008) 289 -296.

[4] J. Hofstetter, Defect engineering strategies for solar grade silicon and their optimization by predictive simulation, Ph.D. thesis, Universidad Polit`ecnica de Madrid (2011).

[5] G. Coletti, R. Kvande, V. D. Mihailetchi, L. J. Geerligs, L. Arnberg, E. J. Øvrelid, Journal of applied physics 104 (2008) 104913.


[6] J. Hofstetter, D. P. Fenning, M. I. Bertoni, J. F. Leli`evre, C. del Ca˜nizo, T. Buonassisi, Prog. Photovoltaics Res. Appl. 19 (2010) 487 -497.

[7] J. H¨ark¨onen, V. -P. Lempinen, T. Juvonen, J. Kylm¨aluoma, Sol. Energ. Mat. Sol. Cells 73 (2003) 125-130.

[8] P. Manshanden, L. Geerligs, Sol. Energy Mater. Sol. Cells 90 (2006) 998-1012.

[9] J. Tan, A. Cuevas, D. Macdonald, N. Bennett, I. Romijn, T. Trupke, R. Bardos, in: Proc. 22nd EUPVSEC, Milan, Italy, 2007, pp.1309-1313.

[10] M. D. Pickett, T. Buonassisi, Applied Physics Letters 92 (2008) 122103.

[11] J. Hofstetter, J. F. Leli`evre, C. del Ca˜nizo, A. Luque, Solid State Phenomena 156-158 (2010) 387-393.

[12] M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y. P. B. Mouafi, D. Borchert, A. MontesdeocaSantana, Prog. Photovoltaics Res. Appl.

[13] A. A. Istratov, T. Buonassisi, R. J. McDonald, A. R. Smith, R. Schindler, J. A. Rand, J. P. Kalejs, E. R. Weber, J. Appl. Phys. 94 (2003) 6552-6559.

[14] D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, L. J. Geerligs, J. Appl. Phys. 97 (2005) 033523-1 -033523-7.


[15] T. Buonassisi, A. A. Istratov, M. Heuer, M. A. Marcus, R. Jonczyk, J. Isenberg, B. Lai, Z. Cai, S. Heald, W. Warta, R. Schindler, G. Willeke, E. R. Weber, J. Appl. Phys. 97 (2005) 074901-1 -074901-11.


[16] D. P. Fenning, J. Hofstetter, M. I. Bertoni, S. Hudelson, M. Rinio, J. F. Leli`evre, B. Lai, C. del Ca˜nizo, T. Buonassisi, Applied Physics Letters 98 (2011) 162103.

[17] D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, in: Proc. 29th IEEE PVSC, New Orleans, Louisiana, 2002, pp.285-288.

[18] R. Kvande, B. Geerligs, G. Coletti, L. Arnberg, M. D. Sabatino, E. J. Ovrelid, C. C. Swanson, Journal of applied physics 104 (2008) 064905.


[19] I. E. Reis, S. Riepe, W. Koch, J. Bauer, S. Beljakowa, O. Breitenstein, H. Habenicht, D. Kreßner-Kiel, G. Pensl, J. Sch¨n, W. Seifert, in: proc. 24th EUPVSEC, Hamburg, Germany, 2009, pp.2144-2148.

[20] M. Rinio, A. Yodyunyong, M. Pirker, C. Zhang, D. G¨unther, P. Botchak, S. Keipert, D. Borchert, M. Heuer, A. Montesdeoca-Santana, in: Proc. 24th EUPVSEC Hamburg, Germany, 2009, pp.1816-1819.

[21] A. Zuschlag, S. Ohl, J. Bernhard, H. Morhenn, J. Ebser, J. Junge, S. Seren, G. Hahn, in: Proc. 35th IEEE PVSC, 2010, Honolulu, HI, 2010, pp.347-351.


[22] P. Plekhanov, R. Gafiteanu, U. G¨osele, J. T.Y. Tan, J. Appl. Phys. 86 (1999) 2453-2458.

[23] M. Seibt, A. Sattler, C. Rudolf, O. Voss, V. Kveder, W. Schr¨oter, phys. stat. sol. (a) 203 (2006) 696.

[24] J. Hofstetter, J. -F. Leli`evre, D. P. Fenning, M. I. Bertoni, T. Buonassisi, A. Luque, C. del Ca˜nizo, phys. stat. sol. (c) 8 (2010) 759 -762.

[25] J. Sch¨on, H. Habenicht, M. C. Schubert, W. Warta, Solid State Phenomena 156-158 (2010) 223 - 228.

[26] J. -F. Leli`evre, J. Hofstetter, A. Peral, I. Hocesc, F. Recart, C. del Ca˜nizo, Energy Procedia (2011) in press.