Polycrystalline Silicon Layers with Enhanced Thermal Stability

Abstract:

Article Preview

We report on a new method of external gettering in silicon substrate for semiconductor applications. The proposed method is based on the deposition of a multilayer system formed by introducing a number of thin buried silicon oxide layers into the thick polycrystalline silicon layer deposited on the wafer backside. Oxide films of a few nanometer thicknesses significantly retard both the grain growth and subsequent loss of the gettering capability of the polycrystalline silicon layer during high temperature annealing. The mechanisms of the grain growth and the influence of the embedded oxide layers on the gettering function in the multilayer system are discussed. We used scanning electron microscopy and transmission electron microscopy for the characterization of the multilayer system, and intentional contamination for demonstration of the gettering properties.

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Edited by:

W. Jantsch and F. Schäffler

Pages:

385-391

DOI:

10.4028/www.scientific.net/SSP.178-179.385

Citation:

D. Lysáček et al., "Polycrystalline Silicon Layers with Enhanced Thermal Stability", Solid State Phenomena, Vols. 178-179, pp. 385-391, 2011

Online since:

August 2011

Export:

Price:

$38.00

[1] S. M. Hu, U.S. Patent 4, 053, 335 (1976).

[2] Y. Hayamizu, S. Tobe, H. Takeno, Y. Kitagawara, Computer Simulation of Impurity Gettering Capability in Silicon for Current Gettering Techniques, in: H. R. Huff, U. Gosele, H. Tsuya (Eds. ), Semiconductor Silicon, 1998, pp.1080-1094.

[3] Y. Wada, S. Nishimatsu, Grain growth mechanism of heavily phosphorus-implanted polycrystalline silicon, J. Electrochem. Soc. 125 (1978) 1499.

DOI: 10.1149/1.2131703

[4] L. Mei, M. Rivier, Y. Kwark, and R. W. Dutton, Grain-growth mechanisms in polysilicon, J. Electrochem. Soc. 129 (1982) 1791.

[5] M. W. Jenkins, New Preferential Etch for Defects in Si Crystals, J. Electrochem. Soc., 124 (1974) 757-762.

[6] X.Z. Yang, D. Yang, J. Chen, D. Que, H. J. Moeller, Nickel precipitation in large-diameter Czochralski silicon, Physica B 334 (2004) 407- 412.

DOI: 10.1016/j.physb.2003.10.020

[7] D. Lysáček, L. Válek, J. Spousta, T. Šikola, R. Špetík, Thermal stability of undoped polycrystalline silicon layers on antimony and boron-doped substrates, Thin Solid Films 518 (2010) 4052-4057.

DOI: 10.1016/j.tsf.2010.02.018

[8] D. Lysáček, Thin films of polycrystalline silicon, Doctoral thesis, Brno University of Technology, (2010).

[9] T.I. Kamins, Polycrystalline silicon for integrated circuits and displays, Kluwer Academic Publisher, Norwell, (1998).

[10] D. Meakin, J. Stoemenos, P. Migliorato, N.A. Economou, Structural studies of low-temperature low-pressure chemical deposited polycrystalline silicon, J. Appl. Phys. 61 (1987) 5031.

DOI: 10.1063/1.338325

[11] G.R. Wolstenholme, N. Jorgensen, P. Ashburn, G.R. Booker, An investigation of the thermal stability of the interfacial oxide in polycrystalline silicon emitter bipolar transistors by comparing device results with high-resolution electron microscopy observation, J. Appl. Phys. 61 (1987).

DOI: 10.1063/1.338861

In order to see related information, you need to Login.