Reconstruction of a High Angle Tilt (110)/(001) Boundary in Si Using O-lattice Theory


Article Preview

High angle close to 90° tilt Si boundary created by direct wafer bonding (DWB) using SmartCut® technology is studied in this work. Experimental identification of defects and morphologies at the interface is realized using conventional transmission electron microscopy (TEM) and geometric phase analysis (GPA) of high-resolution TEM images. Atom reconstruction of the interface along the direction is carried out within the frame of the O-lattice theory. We demonstrate that to preserve covalent bonding across the interface it should consist of facets intersected by a maximum of six planes with three 90° Shockley dislocations per facet. For a long enough interface the formation of Frank dislocations is predicted with a period equal 6 times that of Shockley dislocations. Long range undulations of the interface are shown to be related directly to a deviation from exact 90° tilt of the layer with respect to the substrate.



Solid State Phenomena (Volumes 178-179)

Edited by:

W. Jantsch and F. Schäffler




N. Cherkashin et al., "Reconstruction of a High Angle Tilt (110)/(001) Boundary in Si Using O-lattice Theory", Solid State Phenomena, Vols. 178-179, pp. 489-494, 2011

Online since:

August 2011




[1] G. Patriarche, F. Jeannès, J. -L. Oudar and F. Glas, J. Appl. Phys. 82, 4892 (1997).

[2] M. Kittler, M. Reiche, Advanced Engineering Materials 11, 249 (2009).

[3] K. L. Saenger, J. P. de Souza, K. E. Fogel, J. A. Ott, A. Reznicek, C. Y. Sung, D. K. Sadana, and H. Yin, Appl. Phys. Lett. 87, 221911 (2005).


[4] H. Yin et al., VLSI Symp. p.222 (2007).

[5] F. Lançon, J. Ye, D. Caliste, T. Radetic, A. M. Minor, and U. Dahmen, Nano Lett. 10 (2), p.695–700 (2010).

[6] A. Ciucivara, B. R. Sahu, S. Joshi, S. K. Banerjee, and L. Kleinman, Phys. Rev. B 75, 113309 (2007).

[7] H. Kariyazaki, T. Aoki, K. Izunome and K. Sueoka, J. of Appl. Phys. 107, 113509 (2010).

[8] S. Joshi, A. Ciucivara, B. R. Sahu, L. Kleinman, R. Wise, M., Seacrist, M. Ries, R. Cleavelin, A. Pinto, Y. -T. Huang, M. Ma, C. -T. Lin, and S. K. Banerjee, Appl. Phys. Lett. 90, 043503(2007).


[9] J.L. Rouviere, F. Lançon, K. Rousseau, D. Caliste, P.H. Jouneau and F. Fournel, 6th Intern. Conf. on Microscopy of Semiconducting Materials IOP Publishing Journal of Physics: Conference Series 209 (2010) 012041.

[10] E. Toyoda, A. Sakai, H. Isogai, T. Senda, K. Izunome, K. Omote, O. Nakatsuka and S. Zaima J. J. of Appl. Phys. 48 (2009) 021208.


[11] T. Signamarcheix, B. Biasse, A. -M. Papon, E. Nolot, F. Mazen, J. Leveneur, O. Faynot, L. Clavelier, and B. Ghyselen, Appl. Phys. Lett. 96 (2010) 262111.


[12] V. Vdovin, N. Zakharov, E. Pippel, P. Werner, M. Milvidskii, M. Ries, M. Seacrist, and R. Falster Phis. Stat. Sol. (c) 6, 1929 (2009).


[13] M. Bruel, Electron. Lett., 31, 1201 (1995).

[14] O. Kononchuk, F. Boedt, and F. Allibert, Sol. St. Phenom., 131-133, 113 (2008).

[15] M.J. Hytch, E. Snoeck, R. Kilaas, Ultramicroscopy 74, (1998) 131-146.

[16] Nishimura M, Yoshino S, Motoura H, Shimura S, Mchedlidze T, Hikone T, J. Electrochem. Soc. 143, (1996) L243.

[17] W. Bollmann, Crystal Defects and Crystalline Interfaces, Springer, Berlin (1970).

[18] R. W Balluffi, A. Brokman and A. H. King, Acta Metall. 30, (1982) 1453-1470.

Fetching data from Crossref.
This may take some time to load.