Rolic® LCMO Photo Alignment Technology: Mechanism and Application to Large LCD Panels

Abstract:

Article Preview

Rolic® Light Controlled Molecular Orientation (LCMO) technology is the basis for todays advanced mass production technologies for large LCD-TV panel, high-resolution 3D patterned-retarders and high-resolution optical security devices. This fundamental technology allows an easy achievement of high resolution azimuthal LC-director patterns with defined bias angles, from homogeneous planar to homeotropic orientation, depending on the target application [1-7]. In addition to the control of bias angles, LCD panel manufacturers require alignment layers with a wide range of optimized properties. Thin alignment films must be easily coatable and should have high photosensitivity in order to achieve fast processing. The photoalignment film should also have high stability and good electrical properties such as Voltage Holding Ratio (VHR), Residual DC (RDC) and image sticking. Because of in-situ photo crosslinking during processing [1, 2], our proprietary LCMO photoalignment technology is shown to be thermally and optically stable. Last years, enormous progress has been made in the development of advanced materials that meet all requirements for mass production of large-area flat panel displays. LCMO-VA technology, for vertical alignment LCDs, is the basis for the state of the art UV2 A production technology recently used in the manufacturing of advanced new generation LCD-TV panel displays with reduced production costs and low energy consumption [8, 9]. LCMO-VA mechanism and performances of state of the art materials will be discussed.

Info:

Periodical:

Solid State Phenomena (Volumes 181-182)

Edited by:

Yuan Ming Huang

Pages:

3-13

Citation:

M. Ibn-Elhaj et al., "Rolic® LCMO Photo Alignment Technology: Mechanism and Application to Large LCD Panels", Solid State Phenomena, Vols. 181-182, pp. 3-13, 2012

Online since:

November 2011

Export:

[1] M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov: Jpn. J. Appl. Phys. Vol. 31(1992), p.2155.

[2] M. Schadt and H. Seiberle: SID 97 DIGEST, 397 (1997).

[3] M. Schadt, H. Seiberle and A. Schuster: Nature Vol. 381(1996), p.212.

[4] M. Schadt, H. Seiberle, A. Schuster and S. Kelly: Jpn. J. Appl. Phys, Vol. 34 (1995), p.3240.

[5] H. Seiberle and M. Schadt: Journal of the SID 8/1, 67 (2000).

[6] M. Ibn-Elhaj and M. Schadt: Nature, Vol. 410 (2001), p.796.

[7] H. Seiberle, T. Bachels, C. Benecke and M. Ibn-Elhaj: IEICE Trans. Electron. Vol. E90-C (2007), p. (2088).

DOI: https://doi.org/10.1093/ietele/e90-c.11.2088

[8] K. Miyachi, K. Kobayashi, Y. Yamada and S. Mizushima: SID 10 DIGEST, 579 (2010).

[9] Y. Yamada, T. Sakurai and K. Miyachi, SID-ME Spring Meeting (2011).

[10] M. Eich and J. H. Wendorff, Macromol. Chem. Rapid Comm. 8, 467 (1987).

[11] T. Todorov, L. Nikolova and N. Tomova, Appl. Optics 23, 4309 (1984).

[12] K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki and K. Aoki, Langmuir 4, 1214 (1988).

[13] W M Gibbons, P J Shannon, S T Sun and B J Swetlin, Nature 351, 49 (1991).

[14] K. Limura, J. Kusano, S. Kobayashi, Y. Aoyagi and T. Sugano, Jap. J. Appl. Phys. 3, L93 (1993).

[15] M. Hasegawa and Y. Taira, J. Photopoly. Sci. Technol. 8 (1995), p.241.

[16] J. Lu, S.V. Deshpande, E. Gulari, J. Kanicki and W. L. Warren, J. Appl. Phys. 80 (1996), p.5028.

[17] P. G Egerton., E. Pitts and A. Reiser, Macromolecules 14 (1981), p.95.

[18] E. Pretsch, T. Clerc, J. Seibl, W. Simon and K. Bienmann: Springer-verlag, Berlin Heidelberg, 2nd edition, (1989).

[19] Preferred in-plane and out-of-plane orientation of π-orbitals phenyl groups revealed using surface-sensitive and polarisation dependent Near-edge X-ray Absorption Fine Structure (NEXAFS); to be published.

[20] H. Seiberle, K. Schmitt and M. Schadt: EuroDisplay 99 Proceedings, 121 (1999).

Fetching data from Crossref.
This may take some time to load.