Internal Friction Study of the Rare Earth Ion Substituted Fast Oxide-Ion Conductors (La1-ΧreΧ)2Mo2O9 (Re=Nd, Gd)


Article Preview

The relaxation and phase transition behaviors of rare-earth ion substituted fast oxide-ion conductors (La1-xRex )2Mo2O9 (Re=Nd, Gd) were investigated by internal friction (IF) measurement in the temperature range 300 K - 950 K. Three different IF peaks (labeled as PL, PH, and PG, respectively) were observed in the rare-earth ion doped La2Mo2O9 samples. Peak PL corresponds to short diffusion processes of oxygen ions among different oxygen vacancy sites. Peak PH is associated with the static/dynamic disorder transition in oxygen ion distribution. Peak PG is a newly discovered peak embodying phase transition-like characteristics and is suggested to be related to order-disorder transition associated with the rearrangement of La/ Re sub-lattice.



Solid State Phenomena (Volume 184)

Edited by:

Robert Schaller and D. Mari




X.P. Wang et al., "Internal Friction Study of the Rare Earth Ion Substituted Fast Oxide-Ion Conductors (La1-ΧreΧ)2Mo2O9 (Re=Nd, Gd)", Solid State Phenomena, Vol. 184, pp. 110-115, 2012

Online since:

January 2012




[1] P. Lacorre, F. Goutenoire, O. Bohnke and R. Retoux, Designing fast oxide-ion conductors based on La2Mo2O9, Nature, 404 (2000) 856-858.

DOI: 10.1038/35009069

[2] P. Lacorre, The LPS concept, a new way to look at anionic conductors, Solid State Sciences, 2 (2000) 755-758.

DOI: 10.1016/s1293-2558(00)01106-7

[3] F. Goutenoire, O. Isnard and P. Lacorre, Crystal structure of La2Mo2O9, a new fast oxide-ion conductor, Chem. Mater. 12 (2000) 2575-2580.

DOI: 10.1021/cm991199l

[4] X. P. Wang and Q. F. Fang, Mechanical and dielectric relaxation studies on the mechanism of oxygen ion diffusion in La2Mo2O9, Phys. Rev. B. 65 (2002) 06304(1)- 06304(6).

[5] Z. S. Khadasheva, N. U. Venskovskii, M. G. Safronenko, A. V. Mosunov, E. D. Politova and S. Y. Stefanovich, Synthesis and properties of La2(Mo1-xMx)2O9 (M = Nb, Ta) ionic conductors, Inorg. Mater. 38 (2002) 1168-1171.

DOI: 10.1023/a:1020978902757

[6] R. A. Rocha and E. N. Muccillo, Synthesis and thermal decomposition of a polymeric precursor of the La2Mo2O9 compound, Chem. Mater. 15 (2003) 4268-4272.

DOI: 10.1021/cm030413+

[7] X. P. Wang and Q. F. Fang, Effects of Ca doping on the oxygen ion diffusion and phase transition in oxide ion conductor La2Mo2O9, Solid State Ionics, 146 (2002) 185-193.

DOI: 10.1016/s0167-2738(01)00988-2

[8] D. H. Tsai, M. J. Hsieh, J. C. Tseng and H. Y. Lee, Ionic conductivities and phase transitions of lanthanide rare-earth substituted La2Mo2O9,J. Euro. Ceram. Soc. 25 (2005) 481-487.

DOI: 10.1016/j.jeurceramsoc.2004.03.020

[9] D. Marrero-Lopez, P. Nunez, M. Abril, V. Lavin, U. R. Rodrigueq-Mendoza and V. D. Rodrigueq, Synthesis, electrical properties, and optical characterization of Eu3+doped La2Mo2O9 nanocrystalline phosphors, J. Non-crystal. Solids. 345 (2004).

DOI: 10.1016/j.jnoncrysol.2004.08.047

[10] S. Georges, F. Goutenoire, F. Altorfer, D. Sheptyakov, F. Fasuth, E. Suard and P. Lacorre, Thermal, structural and transport properties of the fast oxide-ion conductors La2-xRxMo2O9 (R=Nd, Gd, Y), Solid State Ionics. 161 (2003) 231-241.

DOI: 10.1016/s0167-2738(03)00279-0

[11] S. Georges, F. Goutenoire, Y. Laligant and P. Lacorre, Reducibility of fast oxide-ion conductors La2-xRxMo2-yWyO9 (R = Nd, Gd), J. Mater. Chem. 13 (2003) 2317-2321.

DOI: 10.1039/b303957a

[12] G. Corbel, E. Chevereau, S. Kodjikian and P. Lacorre, Topological metastability and oxide ionic conduction in La2-xEuxMo2O9, Inorg. Chem. 46 (2007) 6395-6404.

DOI: 10.1021/ic700876d

[13] X. P. Wang, Q. F. Fang, Z. S. Li, G. G. Zhang and Z, G. Yi, Dielectric relaxation studies of Bi-doping effects on the oxygen-ion diffusion in La2-xBixMo2O9 oxide-ion conductors, Appl. Phys. Lett. 81 (2002) 3434-3436.

DOI: 10.1063/1.1518151

[14] X. P. Wang, D. Li, Q. F. Fang, Z. J. Cheng, G. Cobel, and P. Lacorre. Phase transition process in oxide-ion conductor b-La2Mo2-xWxO9 assessed by internal friction method, Appl. Phys. Lett. 89(2006) 021904(1)- 021904(3).

DOI: 10.1063/1.2220056

[15] F. J. Liang, X. P. Wang, Q. F. Fang, J. X. Wang, C. Li, D. Li, and Z. Zhuang, Internal friction studies of La2-xBaxMo2O9-d oxide-ion conductors, Phys. Rev. B. 74 (2006) 014112-014116.

DOI: 10.1103/physrevb.74.014112

[16] C. Li, X. P. Wang, J. X. Wang, D. Li, Z. Zhuang and Q. F. Fang, Study on the Electrical Conductivity and Oxygen Diffusion of Oxide-ion Conductors La2Mo2-xTxO9-d (T= Al, Fe, Mn, Nb, V), Mater. Res. Bul. 42 (2007) 1077-1084.

DOI: 10.1016/j.materresbull.2006.09.014

[17] D. Li, X. P. Wang, Q. F. Fang, J. X. Wang, C. Li, and Z. Zhuang, Phase transition associated with the variation of oxygen vacancy/ion distribution in oxide-ion conductor La2Mo2-xWxO9, Phys. Stat. Sol. (a), 204 (2007) 2270–2278.

DOI: 10.1002/pssa.200622498

[18] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in Halides and chalcogenides, Acta Crystalogr, A32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Fetching data from Crossref.
This may take some time to load.