Drilling-Induced Damage in CFRP Laminates: Experimental and Numerical Analysis


Article Preview

The use of composite materials such as carbon fiber-reinforced plastic (CFRP) has grown considerably in recent years, especially in aerospace, automotive, sports and construction industries. The properties such as high strength and stiffness, low weight, excellent fatigue and corrosion resistance have made them a useful material for light-weight applications. Though parts made from CFRP are often manufactured to a near-net shape, various machining processes such as drilling, can be used to facilitate assembly of structures. Drilling CFRPs involve penetrating through several plies of laminate, which causes high stresses and strains in the vicinity of the drilled hole. Thus, the machining process not only affects the overall hole quality but also initiates discrete damage phenomena such as micro-cracking, matrix burning; delamination and fiber pull out in the specimen. Moreover, the cutting edges of a drill wear dramatically out due to presence of highly abrasive fibers in the matrix, resulting in increased thrust forces that can cause interply delamination.



Solid State Phenomena (Volume 188)

Edited by:

Mircea Nicoară, Aurel Răduţă and Carmen Opriş




V. A. Phadnis et al., "Drilling-Induced Damage in CFRP Laminates: Experimental and Numerical Analysis", Solid State Phenomena, Vol. 188, pp. 150-157, 2012

Online since:

May 2012




[1] E.P. DeGarmo, J.T. Black, R.A. Kohser, Materials and processes in manufacturing. 2003: Wiley.

[2] A. Faraz, D. Biermann, K. Weinert, Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates. International Journal of Machine Tools and Manufacture, 2009. 49(15): pp.1185-1196.

DOI: https://doi.org/10.1016/j.ijmachtools.2009.08.002

[3] H. Hocheng, C. C. Tsao, Comprehensive analysis of delamination in drilling of composite materials with various drill bits. Journal of Materials Processing Technology, 2003. 140(1-3): pp.335-339.

DOI: https://doi.org/10.1016/s0924-0136(03)00749-0

[4] S. R. Karnik, V. N. Gaitonde, J. Campos Rubio, A. Esteves Correia, A. M. Abrão, J. P. Davim, Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Materials & Design, 2008. 29(9): pp.1768-1776.

DOI: https://doi.org/10.1016/j.matdes.2008.03.014

[5] J. P. Davim, J. C. Rubio, A. M. Abrao, A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Composites Science and Technology, 2007. 67(9): p.1939-(1945).

DOI: https://doi.org/10.1016/j.compscitech.2006.10.009

[6] U. A. Khashaba, Delamination in drilling GFR-thermoset composites. Composite Structures. 63(3-4): pp.313-327.

DOI: https://doi.org/10.1016/s0263-8223(03)00180-6

[7] J. R. Ferreira, N. L. Coppini, G. W. A. Miranda, Machining optimisation in carbon fibre reinforced composite materials. Journal of Materials Processing Technology, 1999. 92-93: pp.135-140.

DOI: https://doi.org/10.1016/s0924-0136(99)00221-6

[8] S. R. Hallett, W. Jiang, B. Khan, M. R. Wisnom, Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotropic specimens. Composites Science and Technology, 2008. 68(1): pp.80-89.

DOI: https://doi.org/10.1016/j.compscitech.2007.05.038

[9] H. Ullah, A. R. Harland, T. Lucas, D. Price, V. V. Silberschmidt, Finite-element modelling of bending of CFRP laminates: Multiple delaminations. Computational Materials Science. In Press, Corrected Proof.

DOI: https://doi.org/10.1016/j.commatsci.2011.02.005

[10] Z. Hashin, Cumulative damage theory for composite materials: Residual life and residual strength methods. Composites Science and Technology, 1985. 23(1): pp.1-19.

DOI: https://doi.org/10.1016/0266-3538(85)90008-9

[11] I. Lapczyk, J. A. Hurtado, Progressive damage modeling in fiber-reinforced materials. Composites Part A: Applied Science and Manufacturing, 2007. 38(11): pp.2333-2341.

DOI: https://doi.org/10.1016/j.compositesa.2007.01.017

[12] L. Lasri, M. Nouari, M. Mansori, modelling of chip separation in machining unidirectional FRP composites by stiffness degradation concept. Composites Science and Technology, 2009. 69(5), pp.684-692.

DOI: https://doi.org/10.1016/j.compscitech.2009.01.004

[13] C. Santiuste, X. Soldani, M. H. Miguélez, Machining FEM model of long fiber composites for aeronautical components. Composite Structures, 2010. 92(3): pp.691-698.

DOI: https://doi.org/10.1016/j.compstruct.2009.09.021

[14] J. P. Davim, J. C. Rubio, A.M. Abrao, A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Composites Science and Technology, 2007. 67(1): p.1939–(1945).

DOI: https://doi.org/10.1016/j.compscitech.2006.10.009

[15] Y. Xiao, W. X. Wang, Y . Takao, The effective friction coefficient of a laminate composite, and analysis of pin-loaded plates. Journal of composite materials, 2000.  34(1): pp.69-87.

DOI: https://doi.org/10.1106/v82b-a1bb-9pwr-mxtc

[16] Abaqus 6. 10 User Documentation manual, Dassault Systems, (2010).

[17] MathWorks MATLAB, User documentation, (2010).