Thermal Stability and Crystallization Kinetics of Ti40Zr10Cu34Pd14Sn2 Bulk Metallic Glass


Article Preview

In this work, the isochronal and isothermal activation energies for the primary crystallization process of Ti40Zr10Cu34Pd14Sn2 bulk metallic glass have been studied by differential scanning calorimetry and determined using the Kissinger approach and the Johnson-Mehl-Avrami analysis, respectively. The activation energy for crystallization evaluated by the Kissinger method is 253 kJ/mol. Similar activation energy for crystallization was obtained from the viscosity measurements. The values of the differential Avrami exponent are also determined from the isothermal data. Assuming diffusion-controlled growth, it is shown that thermal treatment of the samples in the supercooled liquid region considerably influences the behavior of the nucleation rate during the crystallization process.



Solid State Phenomena (Volume 188)

Edited by:

Mircea Nicoară, Aurel Răduţă and Carmen Opriş




M. Calin et al., "Thermal Stability and Crystallization Kinetics of Ti40Zr10Cu34Pd14Sn2 Bulk Metallic Glass", Solid State Phenomena, Vol. 188, pp. 3-10, 2012

Online since:

May 2012




[1] M. Long, H.J. Rack. Biomaterials 19 (1998) 1621-1639.

[2] M. Niinomi, Science and Technology of Advanced Materials 4 (2003) 445–454.

[3] S.L. Zhu, X.M. Wang, F.X. Qin, A. Inoue, Mater Sci Eng A (2007) 459-233.

[4] A. Inoue, Acta Materialia, 48 (2000) 279-306.

[5] J.F. Löffler, Intermetallics 11 (2003) 529–540.

[6] A. Inoue, X.M. Wang, Interfacial and Oral Health Science (2007) 3-20.

[7] X.H. Lin, W.L. Johnson, J. Applied Physics, 78 (1995) 6514-6519.

[8] J. -J. Oak, H. Kimura, A. Inoue Advanced Materials Research 26-28 (2007) 785-788.

[9] J.J. Oak, G.W. Hwang, Y.H. Park, H. Kimura, S. Yoon, A. Inoue, J. Biomed. Sci. Eng., Vol. 4, No. 3, (2009) 384-391.

[10] S.L. Zhu, X. Wang, F. Qin, M. Yoshimura, A. Inoue, Intermetallics16 (2008) 609-612.

[11] U. Köster, U. Herold, in Glassy Metals I (eds. H.J. Güntheroldt, H. Beck, 225-259, Springer, New York, (1981).

[12] M.T. Clavaguera-Mora, N. Clavaguera, D. Crespo, T. Pradell, Progress in Materials Science, 47 (2002) 559-619.


[13] J. Eckert, S. Scudino: Crystallization of metallic glasses, in Materials Processing Handbook, Ed. J.R. Groza, J.F. Schackelford, E.J. Lavernia, M.T. Powers, Taylor & Francis CRC Press, Chapter 6, (2007), 1-27.

[14] M. Calin, M. Stoica, J. Eckert, A.R. Yavari, L. Schultz, Mat. Sci. Eng. A 392 (2005) 169–178.

[15] Y.C. Kim, D.H. Bae, W.T. Kim, and D.H. Kim, J. Non-Cryst. Solids V325, (2003) 242.

[16] J-J. Oak et al., J. Mater. Res., Vol. 22, No. 5, (2007) 1346-1353.

[17] Z.Z. Yuan, S.L. Bao, Y. Lu, D.P. Zhang, L. Yao, J. Alloys Compd. 459 (2008) 251-256.

[18] A. Peker, W.L. Johnson, Appl. Phys. Lett. 63 (1993) 2342.

[19] A.J. Drehman, A.L. Greer, Acta Metall. 32 (1984) 323.

[20] D. Turnbull, Met Trans 12A: (1981) 695.

[21] R. Busch, E. Bakke, W.L. Johnson, Acta Mater. 46 (1998) 4725.

[22] L.C. Chen and F. Spaepen, Nature 336, (1988) 366.

[23] S. Scudino, S. Venkataraman, J. Eckert, J. Alloys Compd. 460 (2008) 263-69.

[24] S. Venkataraman, H. Hermann, C. Mickel, L. Schultz, D.J. Sordelet, J. Eckert, Phys. Rev. B 75 (2007) 1042061.

[25] D.L. Peng, M. Yan, J.F. Sun, J. Shen, Y.Y. Chen, D.G. McCarteny, J. Alloys Compd. 400 (2005) 197-203.

[26] J.W. Christian, The Theory of Transformation in Metals and Alloys, Pergamon Press, Oxford, (2002) 529.

[27] J. Burke, The Kinetics of Phase Transformations in Metals, Pergamon Press, Oxford, (1965).

[28] S. Venkataraman, E. Rozhkov, J. Eckert, L. Schultz, D.J. Sordelet, Intermetallics 13 (2005) 833–840.

[29] N. Zheng, M. Calin, J. Eckert et. al., submitted to J. Mater. Res (2010).