Electrical and Magnetic Properties of CuEu2W2O10 and Cu3Eu2W4O18

Abstract:

Article Preview

Magnetic susceptibility measurements showed both a weak response to magnetic field and a lack of the Curie-Weiss region for CuEu2W2O10 and Cu3Eu2W4O18 tungstates characteristic for the multiplet widths comparable to thermal energy. Magnetization measurements displayed the linear temperature dependence with the lower magnetic moment for Cu3Eu2W4O18 in comparison with CuEu2W2O10, indicating that the effect of the electric charges associated with the surrounding ligands can change the multiplet width of individual states. It is affecting the electrical properties of examined tungstates which reveal the insulating state and low relative permittivity εr ~ 29 in case of CuEu2W2O10 and the thermally activated p-type electrical conduction for Cu3Eu2W4O18 with the activation energy of 1.11 eV and the large value of εr ~ 217 above the room temperature.

Info:

Periodical:

Solid State Phenomena (Volume 194)

Edited by:

Yuriy Verbovytskyy and António Pereira Gonçalves

Pages:

104-107

Citation:

P. Urbanowicz et al., "Electrical and Magnetic Properties of CuEu2W2O10 and Cu3Eu2W4O18", Solid State Phenomena, Vol. 194, pp. 104-107, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] Q. Meng, R. Hua, B. Chen, Y. Tian, S. Lu, L. Sun, Study on luminescent properties of Eu3+ doped Gd2WO6, Gd2W2O9 and Gd2(WO4)3 nanophosphors prepared by co-precipitation, J. Nanosci. Nanotechnol. 11 (2011) 182-188.

DOI: https://doi.org/10.1166/jnn.2011.3078

[2] Q. Zhang, Q. Meng, Y. Tian, X. Feng, J. Sun, S. Lu, Luminescent properties of Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors prepared via co-precipitation method, J. Rare Earths 29 (2011) 815-821.

DOI: https://doi.org/10.1016/s1002-0721(10)60566-2

[3] P. Urbanowicz, E. Tomaszewicz, T. Groń, H. Duda, A.W. Pacyna, T. Mydlarz, Magnetic properties of R2WO6 (where R = Nd, Sm, Eu, Gd, Dy and Ho), Physica B 404 (2009) 2213-2217.

DOI: https://doi.org/10.1016/j.physb.2009.04.016

[4] A.W. Sleight, Accurate cell dimensions for ABO4 molybdates and tungstates, Acta Crystallogr. B 26 (1970) 2899-2902.

DOI: https://doi.org/10.1107/s0567740872007186

[5] L. Kihlborg, L. Gebert, CuWO4, a distorted wolframite-type structure, Acta Crystallogr. B 26 (1970) 1020-1026.

DOI: https://doi.org/10.1107/s0567740870003515

[6] P.F. Schofield, K.S. Knight, S.A.T. Redfern, G. Cressey, Distortion characteristics across the structural phase transition in (Cu1-xZnx)WO4, Acta Crystallogr. B 53 (1997) 102-112.

DOI: https://doi.org/10.1107/s0108768196010403

[7] L. Chi-Lin, F. Zheng-Wen, Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries, Electrochim. Acta, 53 (2008) 4293-4301.

DOI: https://doi.org/10.1016/j.electacta.2008.01.014

[8] E. Tomaszewicz, J. Typek, S.M. Kaczmarek, Synthesis, characterization and thermal behaviour of new copper and rare-earth metal tungstates, J. Therm. Anal. Calorim. 98 (2009) 409-421.

DOI: https://doi.org/10.1007/s10973-009-0295-x

[9] E. Tomaszewicz, A. Worsztynowicz, S.M. Kaczmarek, Subsolidus phase relations in CuWO4-Gd2WO6 system, Solid State Sci. 9 (2007) 43-51.

DOI: https://doi.org/10.1016/j.solidstatesciences.2006.11.010

[10] I. Okońska-Kozłowska, H.D. Lutz, T. Groń, J. Krok, T. Mydlarz, Darstellung, elektrische und magnetische Eingenschaften von-Zn1-xGa0. 667xCr2Se4-Spinell-Einkristallen, Mat. Res. Bull. 19 (1984) 1-5.

DOI: https://doi.org/10.1016/0025-5408(84)90002-3

[11] R.T. Littleton IV, J. Jeffries, M.A. Kaeser, M. Long, and T.M. Tritt, Proceedings of 1998 Materials Research Society, Vol. 545 (1998) p.137.

[12] A.H. Morrish, The Physical Principles of Magnetism, Wiley, New York, (1965).

[13] C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., New York, (1960).

[14] A. Earnshaw, Introduction to Magnetochemistry, Academic Press, London, (1968).