Composition Dependent Band Gaps of Single Crystal Cu2ZnSn(SxSe1-x)4 Solid Solutions

Abstract:

Article Preview

Single crystals of Cu2ZnSn(SxSe1-x)4 (CZTSSe) solid solutions have deen grown by chemical vapor transport technique using ICl3 as a transport agent. Analyzing the X-ray diffraction patterns reveal that the as-grown CZTSSe solid solutions are crystallized in kesterite structure and the lattice parameters are determined. The S contents of the obtained crystals are estimated by Vegard’s law. The composition dependent band gaps of CZTSSe solid solutions are studied by electrolyte electroreflectance (EER) techniques. The band gaps of CZTSSe are evaluated by a lineshape fit of the EER spectra and are found to increase almost linearly with the increase of S content.

Info:

Periodical:

Solid State Phenomena (Volume 194)

Edited by:

Yuriy Verbovytskyy and António Pereira Gonçalves

Pages:

139-143

Citation:

Y. P. Wang et al., "Composition Dependent Band Gaps of Single Crystal Cu2ZnSn(SxSe1-x)4 Solid Solutions", Solid State Phenomena, Vol. 194, pp. 139-143, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express 1 (2008) 041201 (2pp).

DOI: https://doi.org/10.1143/apex.1.041201

[2] A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kötschau, S. Schorr, H.W. Schock, Thin Solid films 517 (2009) 2524-2526.

DOI: https://doi.org/10.1016/j.tsf.2008.11.033

[3] T.K. Todorov, K.B. Reuter, and D.B. Mitzi, Adv. Mater. 22 (2010) E156–E159.

[4] K. Ito, T. Nakazawa, Jpn. J. Appl. Phys. 27 (1988) 2094-(2097).

[5] K. Wang, O. Gunawan, T.K. Todorov, B. Shin, S. J. Chey, N.A. Bojarczuk, D. Mitzi, S. Guha, Appl. Phys. Lett. 97 (2010) 143508 (3pp).

DOI: https://doi.org/10.1063/1.3499284

[6] D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Prog. Photovolt: Res. Appl. 20 (2012) 6-11.

[7] H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, CrystEngCommun 13 (2011) 2222-2226.

[8] M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Thin Solid films 519 (2011) 7403-7406.

DOI: https://doi.org/10.1016/j.tsf.2010.12.099

[9] J. He, L. Sun, S. Chen, Y. Chen, P. Yang, J. Chu, J. Alloys Compd 511 (2012) 129-132.

[10] S. Chen, A. Walsh, J.H. Yang, X.G. Gong, L. Sun, P. X. Yang, J.H. Chu, S.H. Wei, Phys. Rev. B 83 (2011) 125201 (5pp).

[11] S. Levcenco, D. Dumcenco, Y.P. Wang, Y.S. Huang, C.H. Ho, E. Arushanov, V. Tezlevan, K.K. Tiong, Opt. Mater. 34 (2012) 1072-1076.

[12] B. Tell, J.L. Shay, H.M. Kasper, Phys. Rev. B 4 (1971) 2463-2471.

[13] D.E. Aspnes, Modulation Spectroscopy/Electric Field Effects on the Dielectric Function of Semiconductors, in: T.S. Moss, M. Balkanski (Eds. ), Handbook on Semiconductors, vol. 2, North-Holland, Amsterdam, 1980, pp.109-154.

[14] C. Person, J. Appl. Phys. 107 (2010) 053710 (8pp).

[15] B. Tell, J.L. Shay, H.M. Kasper, Phys. Rev. B 4 (1971) 2463-2471.

[16] I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Chem. Mater. 22 (2010) 1402-1409.

[17] H. Matsushita, T. Ichikawa, A. Katsui, J. Mater. Sci. 40 (2005) 2003-(2005).

[18] M. Cardona, K.L. Shaklee, F.H. Pollak, Phys. Rev. 154 (1967) 696-720.

[19] S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Phys. Rev. B 79 (2009) 165211 (10pp).

[20] S.H. Han, F.S. Hasoon, J.W. Pankow, A.M. Hermann, D.H. Levi, Appl. Phys. Lett. 87 (2005) 151904 (3pp. ).

[21] S. Botti, D. Kammerlander, M.A.L. Marques, Appl. Phys. Lett. 98 (2011) 241915 (3pp. ).