High-Temperature Optical Characterization of Transition Metal Dichalcogenides by Piezoreflectance Measurements

Abstract:

Article Preview

A systematic optical characterization of transition metal dichalcogenide layered crystals grown by chemical vapour transport method as well as of natural molybdenite were carried out by using piezoreflectance (PzR) measurements. From a detailed lineshape fit of the room-temperature PzR spectra over an energy range from 1.6 to 5.0 eV, the energies of the band-edge excitonic and higher lying interband direct transitions were determined accurately. The possible assignments of the different origins of excitonic transitions are discussed. The near direct band edge A and B excitonic transitions detected in PzR spectra show a linear red-shift with the temperature increasing up to 525 K. The values of temperature-dependent energies of the excitonic transitions A and B are evaluated and discussed.

Info:

Periodical:

Solid State Phenomena (Volume 194)

Edited by:

Yuriy Verbovytskyy and António Pereira Gonçalves

Pages:

158-161

Citation:

D. O. Dumcenco et al., "High-Temperature Optical Characterization of Transition Metal Dichalcogenides by Piezoreflectance Measurements", Solid State Phenomena, Vol. 194, pp. 158-161, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] J.A. Wilson, A.D. Yoffe, Adv. Phys. 18 (1969) 193-335.

[2] A.R. Beal, J.C. Knights, W.Y. Liang, J. Phys. C: Solid State. Phys. 5 (1972) 3540-3551.

[3] K.K. Kam, B.A. Parkinson, J. Phys. Chem. 86 (1982) 463-467.

[4] P.G. Moses, B. Hinnemann, H. Topsøe, J.K. Nørskov, J. Catal. 248 (2007) 188-203.

[5] D. Dumchenko, C. Gherman, L. Kulyuk, E. Fortin, L. Charron, Thin Solid Films 495 (2006) 82-85.

DOI: https://doi.org/10.1016/j.tsf.2005.08.225

[6] L. Kulyuk, D. Dumchenko, E. Bucher, K. Friemelt, O. Schenker, L. Charron, E. Fortin, T. Dumouchel, Phys. Rev. B 72 (2005) 075336 (7pp. ).

DOI: https://doi.org/10.1103/physrevb.72.075336

[7] L. Charron, D. Dumchenko, E. Fortin, C. Gherman, L. Kulyuk, J. Lumin. 112 (2005) 45-49.

[8] D. Dumchenko, C. Gherman, L. Kulyuk, J. Optoelectr. Advanced Mater. 7 (2005) 775-779.

[9] C.H. Ho, C.S. Wu, Y.S. Huang, P.C. Liao, K.K. Tiong: J. Phys.: Condens. Matter 10 (1998) 9317-9328.

[10] D.O. Dumcenco, Y.C. Su, Y.P. Wang, K.Y. Chen, Y.S. Huang, C.H. Ho, .K.K. Tiong, Solid State Phenomena 170 (2011) 55-59.

[11] D.O. Dumcenco, K.Y. Chen, Y.P. Wang, Y.S. Huang, K.K. Tiong, J. Alloys Comp. 506 (2010) 940-943.

[12] D.O. Dumcenco, Y.C. Su, Y.P. Wang, K.Y. Chen, Y.S. Huang, C.H. Ho, .K.K. Tiong, Chinese J. Phys. 49 (2011) 270-277.

[13] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. -Y. Chim, G. Galli, F. Wang, Nano Lett. 10 (2010) 1271-1275.

DOI: https://doi.org/10.1021/nl903868w

[14] C. Lee, H. Yan, L. E. Brus, T. Heinz, J. Hone, S. Ryu, ACS Nano 4 (2010) 2695-2700.

[15] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105 (2010) 136805 (4pp. ).

[16] B. Radisavljevic, M. B. Whitwick, A. Kis, ACS Nano 5 (2011) 9934-9938.

[17] F.Z. Chien, Y.S. Chen, Y.C. Chu, W.Y. You, J.B. Lee, T.E. Dann, C.H. Tu, Y.S. Huang, Chinese J. Phys. 26 (1988) 119-125.

[18] F.H. Pollak, H. Shen, Mater. Sci. Eng. R 10 (1993) xv-xvi, 275-374.

[19] D.O. Dumcenco, H.P. Hsu, Y.S. Huang, C.H. Liang, K.K. Tiong, C.H. Du, Mater. Chem. Phys. 111 (2008) 475-479.

[20] R. Coehoorn, C. Haas, R.A. de Groot, Phys. Rev. B 35 (1987) 6203-6206.

[21] Th. Straub, K. Fauth, Th. Finteis, M. Hengsberger, R. Claessen, P. Steiner, S. Hufner, P. Blaha, Phys. Rev. B 53 (1996) R16152-R16155.

DOI: https://doi.org/10.1103/physrevb.53.r16152

[22] R. Coehoorn, C. Haas, J. Dijkstra, C.J. Flipse, R.A. de Groot, A. Wold, Phys. Rev. B 35 (1987) 6195-6202.

[23] A.R. Beal, H.P. Hughes, J. Phys. C: Solid State Phys. 12 (1979) 881-890.