Effects of La2O3 Addition on the Microstructure and Properties of Activated Sintered W-Ni Compacts

Abstract:

Article Preview

In order to improve the properties of Ni activated sintered W compacts, La2O3 was added to a W-1 wt.% Ni matrix alloy. W-1 wt.% Ni-0.5 wt.% La2O3 and W-1 wt.% Ni-1 wt.% La2O3 composites were fabricated by mechanical alloying and activated sintering methods. The effects of La2O3 content and mechanical alloying duration on the microstructural and physical properties of activated sintered W-Ni compacts were investigated. The results showed that La2O3 particles have a significant effect on the density/microhardness values and wear amounts of the samples. The relative density value of 96.39 % and microhardness value of 4.08±0.28 GPa of W-1 wt.% Ni samples increased to respectively 98.09 % and 5.45±0.29 GPa with the addition of 1 wt.% La2O3. Wear rate of 3.26±0.81 (mm3N-1m-1)x10-9 of the W-1 wt% Ni samples decreased to 2.10±0.24 (mm3N-1m-1)x10-9 with the addition of 0.5 wt.% La2O3. Furthermore, grain sizes decreased and microhardness values increased with increasing mechanical alloying duration.

Info:

Periodical:

Solid State Phenomena (Volume 194)

Edited by:

Yuriy Verbovytskyy and António Pereira Gonçalves

Pages:

217-221

Citation:

Ö. Balci et al., "Effects of La2O3 Addition on the Microstructure and Properties of Activated Sintered W-Ni Compacts", Solid State Phenomena, Vol. 194, pp. 217-221, 2013

Online since:

November 2012

Export:

Price:

$38.00

[1] E. Lassner, W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, Kluwer Academic, New York, (1999).

[2] R.M. German, Z.A. Munir, Enhanced low-temperature sintering of tungsten, Metall. Mater. Trans. A 7 (1976) 1873-1877.

[3] Y. Kim, H.K. Lee, E. Kim, D. Cheong, S.H. Hong, Fabrication of high temperature oxides strengthened tungsten composites by spark plasma sintering process, Int. J. Refract. Met. H. 27 (2009) 842-846.

DOI: https://doi.org/10.1016/j.ijrmhm.2009.03.003

[4] Y. Kim, M.H. Hong, S.H. Lee, E.P. Kim, S. Lee, J.W. Noh, The effect of yttrium oxide on the sintering behaviour and hardness of tungsten, Metals Mater. Int. 12 (2006) 245-248.

DOI: https://doi.org/10.1007/bf03027538

[5] L.C., Chen, Dilatometric analysis of sintering of tungsten and tungsten with ceria and hafnia dispersoids, Int. J. Refract. Met. H. 12 (1993-1994) 41-51.

DOI: https://doi.org/10.1016/0263-4368(93)90074-p

[6] Ö.U. Demirkan, A. Genç, M.L. Öveçoğlu, Effects of Al2O3 addition on the microstructure and properties of Ni activated sintered W matrix composites, Int. J. Refract. Met. H. 32 (2012) 33-38.

DOI: https://doi.org/10.1016/j.ijrmhm.2012.01.004

[7] Z. Zhou, J. Tan, D. Qu, Basic characterization of oxide dispersion strengthened fine-grained tungsten based materials fabricated by mechanical alloying and spark plasma sintering, J Nucl. Mater. (2011), doi: 10. 1016/j. jnucmat. 2011. 11. 039.

DOI: https://doi.org/10.1016/j.jnucmat.2011.11.039

[8] H.J. Ryu, S.H. Hong, Fabrication and properties of mechanically alloyed oxide-dispersed tungsten heavy alloys, Mater. Sci. Eng. A, 363 (2003) 179-184.

DOI: https://doi.org/10.1016/s0921-5093(03)00641-5

[9] L. Veleva, Z. Oksiuta, U. Vogt, N. Baluc, Sintering and characterization of W-Y and W-Y2O3 materials, Fusion Eng. Des. 84 (2009) 1920-(1924).

DOI: https://doi.org/10.1016/j.fusengdes.2008.12.001

[10] S.W. Kim, S.I. Lee, Y.D. Kim, I.H. Moon, High temperature compressive deformation and fracture characteristics of the activated sintered W-Ni compacts, Int. J. Refract. Met. H. 21 (2003) 183-192.

DOI: https://doi.org/10.1016/s0263-4368(03)00031-3

[11] C.W. Corti, The Role of the Platinium Metals in the Activated Sintering of Refractory Metals. Platinum Metals Rev. 30 (1986) 184-195.

[12] J. Luo, V.K. Gupta, D.H. Yoon, Segregation-induced grain boundary premelting in nickel-doped tungsten, Appl. Phys. Lett. 87 (2005) 231902-1-3.

DOI: https://doi.org/10.1063/1.2138796

[13] H.W. Hayden, J.H. Brophy, The Activated Sintering of Tungsten with Group VIII Elements, J. Electrochem. Soc. 110 (1963) 805-810.

DOI: https://doi.org/10.1149/1.2425876

[14] V.K. Gupta, D.H. Yoon, H.M. Meyer, J. Luo, Thin intergranular films and solid-state activated sintering in nickel-doped tungsten, Acta Mater. 55 (2007) 3131-3142.

DOI: https://doi.org/10.1016/j.actamat.2007.01.017

[15] M.A. Monge, M.A. Auger, T. Leguey, Y. Ortega, L. Bolzoni, E. Gordo, R. Pareja, Characterization of novel W alloys produced by HIP, J Nucl. Mater. 386-388 (2009) 613-617.

DOI: https://doi.org/10.1016/j.jnucmat.2008.12.217

[16] M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, M. Muhammed, Chemically produced nanostructured ODS-lanthanum-oxide-tungsten composites sintered by spark plasma, J Nucl. Mater. 408 (2011) 129-135.

DOI: https://doi.org/10.1016/j.jnucmat.2010.10.060

[17] Y. Chen, Y.C. Wu, F.W. Yu, J.L. Chen, Microstructure and mechanical properties of tungsten composites co-strengthened by dispersed TiC and La2O3 particles Int. J. Refract. Met. H. 26 (2008) 525-529.

DOI: https://doi.org/10.1016/j.ijrmhm.2007.12.004

[18] M. Mabuchi, K. Okamoto, N. Saito, T. Asahina, T. Igarashi, Deformation behavior and strengthening mechanisms at intermediate temperatures in W-La2O3, Mater. Sci. Eng. A 237 (1997) 241-249.

DOI: https://doi.org/10.1016/s0921-5093(97)00420-6

[19] M. Mabuchi, K. Okamoto, N. Satio, M. Nakanishi, Y. Yamada, T. Asahina, T. Igarashi, Tensile properties at elevated temperatures of W-1%La2O3, Mater. Sci. Eng. A 214 (1996) 174-176.

[20] N. Saito, M. Mabuchi, M. Nakamura, T. Asahina, Effects of the La2O3 particles addition on grain boundary character distribution of pure W, J. Mater. Sci. Lett. 17 (1998) 1495-1497.

Fetching data from Crossref.
This may take some time to load.