A Review on BaxSr1-xFe12O19 Hexagonal Ferrites for use in Electronic Devices


Article Preview

The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component which has great to technological applications because of their ferromagnetic and insulating properties at room temperature. Among such ferrites, the hexagonal ones (hexaferrites) have long been used for permanent magnets and are of interest for microwave applications. The hexaferrite M-type has a structure built up from the S blocks interposed by the R block and are symbolically described as RSR*S*. In the last decades there has been great interest in the hexaferrites M-Type for applications as electronic components for mobile and wireless communications at microwave/GHz frequencies, electromagnetic wave absorbers for electromagnetic compatibility (EMC), radar absorting material (RAM) and stealth technologies and as composite materials. This review aimed study the structure, magnetic and dielectric properties of the hexaferrite BaxSr1-xFe12O19, which is a promising material for electronic devices and for small dielectric resonator antennas (MRA).The outline of this Review Paper is as follows:



Solid State Phenomena (Volume 202)

Edited by:

Rajshree B. Jotania and Hardev S. Virk




F.M.M. Pereira and A.S.B. Sombra, "A Review on BaxSr1-xFe12O19 Hexagonal Ferrites for use in Electronic Devices", Solid State Phenomena, Vol. 202, pp. 1-64, 2013

Online since:

May 2013




[1] R. Valenzuela, Magnetic Ceramics, 1 ed, Great Britain: Cambridge University Press, (1994).

[2] A. Goldman, Modern Ferrite Technology, 2 ed. United States of American: Springer, (2006).

[3] J. F. Wang, C. B. Ponton, I. R. Harris, A study of the magnetic properties of hydrothermally synthesized Sr hexaferrite with Sm substitution, J. Magn Magn. Mater. 234 (2) (2001) 233-240.

[4] Z. W. Li, C. K. Ong, F. L. Wei, X. Z. Zhou, J. H. Zhao, A. H. Morrish, Site preference and magnetic properties for a perpendicular recording material: BaFe12-xZnx/2Zrx/2O19 nanoparticles, Phys. Rev. B 62 (2000) 6530-6537.

DOI: https://doi.org/10.1103/physrevb.62.6530

[5] Z. Haijun, Y. Xi, Z. Liangying, The preparation and microwave properties of Ba2ZnxCo2−xFe28O46 hexaferrites, J. Magn Magn. Mater. 241 (2-3) (2002) 441-446.

DOI: https://doi.org/10.1016/s0304-8853(01)00447-4

[6] A. J. O. Cabral. Ogasawara, T. Tavares, L. M. Preparação de Óxido de Ferro Micrométrico para Aplicação em Cerâmicas Magnéticas por Moagem de Alta Energia, Anais 48o Congresso Brasileiro de Cerâmica, 2004 Curitiba - PR.

[7] S. P. Marshall, J. B. Sokoloff, Spin-wave spectrum for barium ferrite, J. Appl. Phys. 67 (4) (1990) 2017-(2023).

[8] V. K. S. Sankaranarayanan, Q. A. Pankhurst, D. P. E Dikson, C. E. Johnson, Ultrafine particles of barium ferrite from a citrate precursor, J. Magn Magn. Mater. 120 (1-3) (1993) 73-75.

DOI: https://doi.org/10.1016/0304-8853(93)91290-n

[9] C. Surig, K. A. Hampel. D. Bonnenberg, Hexaferrite particles prepared by sol-gel technique, IEEE Trans. Magn. 30 (6) (1994) 4092-4093.

DOI: https://doi.org/10.1109/20.333999

[10] R. C. Pullar, M. D. Taylor, D. Bhattacharya, Novel aqueous sol-gel preparation and characterization of barium M ferrite BaFe12O19 fibers, J. Mater. Sci. 32 (1997) 349-352.

[11] S. E. Jacobo, C. Domingo-Pascual, R. Rodriguez-Clemente, M. A. Blesa, Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation, J. Mater. Sci. 32 (1997) 1025-1028.

DOI: https://doi.org/10.1023/a:1018582423406

[12] P. Shi, S. D. Yoon, X. Zuo, I. Kozulin, S. A. Oliver, C. Vittoria, Microwave properties of pulsed laser deposited Sc-doped barium hexaferrite films, J. Appl. Phys. 87 (9) (2000) 4981-4983.

DOI: https://doi.org/10.1063/1.373222

[13] M. Koleva, P. Atanasov, R. Tomov, O. Vankov, C. Matin, C. Ristoscu, I. Mihailescu, D. Iorgov, S. Angelova, C. Ghelev, N. Mihailov, Pulsed laser deposition of barium hexaferrite (BaFe12O19) thin films, Appl. Surf. Sci. 154-155 (2000) 485-491.

DOI: https://doi.org/10.1016/s0169-4332(99)00404-3

[14] R. C. Buchanan. Ceramic Materials for Electronics: processing, properties and applications. 2 ed. rev. expand. United States of American: Marcel Dekker INC. (1991).

[15] J. Smith, H. P. J. Wijn. Ferrites, New York: John Wiley & Sons, (1959).

[16] X. Obradors, A. Collomb, M. Pernet, D. Samara, J. C. Joubert, X-ray analysis of the structural and dynamical properties of BaFe12O19 hexagonal ferrite at room temperature, J. Solid State Chem. 56 (1985) 171-181.

DOI: https://doi.org/10.1016/0022-4596(85)90054-4

[17] C. M. Fang, F. Kools, R. Metselaar, G. With, R. A. Groot, Magnetic and electronic properties of strontium hexaferrites SrFe12O19 from first-principles calculations, J. Phys-Condens. Mat. 15 (2003) 6229-6237.

DOI: https://doi.org/10.1088/0953-8984/15/36/311

[18] F. Kools, Hard Ferrites, In: Concise Encyclopedia of Advanced Ceramic Materials. Ed. R. J. Brook, Pergamon Press, Oxford, 1991, pp.200-206.

DOI: https://doi.org/10.1016/b978-0-08-034720-2.50059-9

[19] G. Albanese, M. Carbucicchio, L. Pareti, S. Rinaldi, E. Licchini, G. Slokar, Magnetic and Mössbauer study of Al, Ga, In and Sc-substituted Zn2-W hexagonal ferrites, J. Magn Magn. Mater. 15-18 (3) 1980 1453-1454.

DOI: https://doi.org/10.1016/0304-8853(80)90365-0

[20] G. Turilli, F. Licci, S. Rinaldi, Mn+2, Ti+4+ substituted barium ferrite, J. Magn Magn. Mater. 59 (1986) 127-131.

[21] L. Lechevallier, J. M. Le Breton, Substitution effects in M-type hexaferrite powders investigated by Mössbauer spectrometry, J. Magn Magn. Mater. 290-291 (2005) 1237–1239.

DOI: https://doi.org/10.1016/j.jmmm.2004.11.411

[22] L. Lechevallier, J. M. Le Breton, J. F. Wang, I. R. Harris, Structural analysis of hydrothermally synthesized Sr1-xSmxFe12O19 hexagonal ferrites, J. Magn Magn. Mater. 269 (2004) 192-196.

DOI: https://doi.org/10.1016/s0304-8853(03)00591-2

[23] M. A. Vinnik, Phase relationships in the BaO-CoO-Fe2O3 system, J. Russ. Inorg. Chem. 10 (1965) 1164-1167.

[24] S. I. Kuznetsova, E. P. Naiden, T. N. Stepanova, Topotactic reaction kinetics in the formation of the hexagonal ferrite Ba3Co2Fe24O41, Inorg. Mater. 24: 66 (1988) 856-859.

[25] J. Drobek, W. C. Bigelow, R. G. Wells, Electron microscopic studies of growth structure in hexagonal ferrites, J. Am. Ceram. Soc. 44 (6) (1961) 262-264.

[26] M. Erchak Jr, I. Funkuchen, R. Ward, Reaction between ferric oxide and barium carbonate in the solid phase. Identification of phases by X-ray diffraction, J Am. Ceram. Soc. 68 (1946) 2085–(2093).

DOI: https://doi.org/10.1021/ja01214a063

[27] H. J. Van Hook, Thermal stability of barium ferrite (BaFe12O19), J. Am. Ceram. Soc. 47 (11) (1964) 579-581.

[28] B. T. Shirk, Ba2Fe6O11: A new metastable compound, Mater. Res. Bull. 5 (10) (1970) 771-777.

[29] Y. Goto, T. Takada, Phase diagram of the system BaO-Fe2O3, J. Am. Ceram. Soc. 43 (3) (1960) 150-153.

[30] G. Slocari, Phase equilibrium in the subsystem BaO-Fe2O3-BaO. 6 Fe2O3, J. Am. Ceram. Soc. 56 (9) (1973) 489-490.

[31] A. G. Sadler, J. Can. Ceram. Soc. 34 (1965) 155.

[32] K. Haneda, C. Miyakawa, H. Kojima, Preparation of high-coercivity BaFe12O19, J. Amer. Ceram. Soc. 7 (8) (1974) 354-357.

[33] P. Batti, Equilibrium of the system BaO-Fe2O3 (in Italian), Ann. Chim. (Rome) 50 (1960) 1461-1478.

[34] H. Stablein, W. May, Ber Deut Keram Geselschaft 46 (1969) 69.

[35] J. S. Reed, R. M. Fulrath, Characterization and sintering behavior of Ba and Sr ferrites, J. Am. Ceram. Soc. 56 (4) (1973) 207-211.

[36] B. Durrant, J. M. Paris. Some characteristics of the ferrite Ba3Fe(II)4Fe(III)28O49, J. Mater. Sci. Lett. 16 (1981) 274-275.

DOI: https://doi.org/10.1007/bf00552085

[37] J. Lipka, A. Grusková, M. Michalıková, M. Miglierini, J. Sláma, I. Tóth. The optimalization of the Ba-hexagonal ferrite phase formation, J. Magn Magn. Mater. 140–144 (1995) 2209-2210.

DOI: https://doi.org/10.1016/0304-8853(94)01198-2

[38] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, A halide free route to the manufacture of microstructurally improved M ferrite (BaFe12O19 and SrFe12O19) fibres, J. Euro. Ceram. Soc. 22 (12) (2002) 2039-(2045).

DOI: https://doi.org/10.1016/s0955-2219(01)00518-0

[39] R. C. Pullar, S. G. Appleton, A. K. Bhattacharya, The manufacture, characterisation and microwave properties of aligned M ferrite fibres, J. Magn Mager Mat. 186 (3) (1998) 326-332.

DOI: https://doi.org/10.1016/s0304-8853(98)00107-3

[40] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, Novel aqueous sol–gel preparation and characterization of barium M ferrite, BaFe12O19 fibres, J. Mater. Sci. 32 (2) (1997) 349-352.

[41] R. C. Pullar, A. K. Bhattacharya, Crystallisation of hexagonal M ferrites from a stoichiometric sol–gel precursor, without formation of the α-BaFe2O4 intermediate phase, Mater. Lett. 57 (3) (2002) 537-542.

DOI: https://doi.org/10.1016/s0167-577x(02)00825-x

[42] F. M. M. Pereira, Estudo das propriedades dielétricas e magnéticas da hexaferrita tipo M (BaxSr1-xFe12O19) para uso em dispositivos eletrônicos. Doctorate Thesis, Universidade Federal do Ceará (2009), pp.1-126.

[43] R. C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci. 57 (2012) 1191–1334.

DOI: https://doi.org/10.1016/j.pmatsci.2012.04.001

[44] V. Biondo. Caracterização estrutural e magnética do sistema Fex(Cr2O3)1-x submetido à moagem de alta energia. M. Sc. (Physics) Dissertation, Universidade Estadual de Maringá (2005), pp.1-128.

[45] C. A. M. Van den Broek, A. L. Stuijts, Ferroxdure, Philips Techn. Rev. 37 (97) (1977) 157-175.

[46] Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data (JCPDS 84-0757).

[47] Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data (JCPDS 33-1340).

[48] Joint Committee on Powder Diffraction Standard (JCPDS), International Center for Diffraction Data (JCPDS 72-0469).

[49] R. Martinez-Garcia, E. Reguera Ruiz, E. Estevez Rams, Structural characterization of low temperature synthesized SrFe12O19, Mater. Lett. 50 (2-3), 183–187 (2001).

DOI: https://doi.org/10.1016/s0167-577x(01)00222-1

[50] M. Sivakumar, A. Gedanken, W. Zhong, Y. W. Du, D. Bhattacharya, Y. Yeshurun, I. Felner, Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)5, J. Magn. Magn. Mater. 268 (1-2), (2004) 95–104.

DOI: https://doi.org/10.1016/s0304-8853(03)00479-7

[51] R. A. Young, The Rietveld Method, Oxford University Press/IUCr, Oxford, 1996, pp.1-38.

[52] J. Durbin, G. S. Watson, Testing for serial correlation in least squares regression I, Biometrika 37 (1950) 409-428.

DOI: https://doi.org/10.1093/biomet/37.3-4.409

[53] J. Durbin, G. S. Watson, Testing for serial correlation in least squares regression II, Biometrika 38 (1951) 159-178.

DOI: https://doi.org/10.1093/biomet/38.1-2.159

[54] J. Durbin, G. S. Watson, Testing for serial correlation in least squares regression III, Biometrika 58 (1971) 1-19.

DOI: https://doi.org/10.2307/2334313

[55] R. Hill, J. H. D. Flack, The use of the Durbin-Watson d statistic in Rietveld analysis, J. Appl. Crystallogr. 20 (1987) 356-361.

[56] E. P Naiden, V. I. Itin, O. G. Terekhova, Mechanochemical modification of the phase diagrams of hexagonal oxide ferrimagnets, Tech. Phys. Lett. 29 (2003) 889-891.

DOI: https://doi.org/10.1134/1.1631354

[57] C. D. Mee, J. C. Jeschke, Single-domain Properties in hexagonal ferrites, J. Appl. Phys. 34 (4) (1963) 1271-1272.

[58] W. Roos, Formation of chemically coprecitated barium ferrite, J. Am. Ceram. Soc. 63 (11-12) (1980) 601-603.

[59] H. Yamamoto, H. Kumehara, R. Takeuchi, N. Nishio, Magnetic Properties of Sr-M Ferrite Fine Particles, J. Phys. IV 7 (1997) C1–535.

DOI: https://doi.org/10.1051/jp4:19971219

[60] A. G. Bagul, J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande, S. K. Date. In: Ferrites, Proc. ICF6, Kyoto and Tokyo. 1992. p.109.

[61] M. M. Rashad, I. A. Ibrahim. Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method, J. Magn. Magn. Mater. 323 (16) (2011) 2158-2164.

DOI: https://doi.org/10.1016/j.jmmm.2011.03.023

[62] D. Lisjak, M. Drofenik, The mechanism of the low-temperature formation of barium hexaferrite, J. Euro. Ceram. Soc. 27 (16) (2007) 4515-4520.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.02.202

[63] D. Lisjak, M. Drofenik, The low-temperature formation of barium hexaferrites, J. Euro. Ceram. Soc. 26 (16) (2006) 3681-3686.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.12.014

[64] E. Matijevic, Uniform colloidal barium ferrite particles, J. Colloid. Interface. Sci. 117 (2) (1987) 593-595.

DOI: https://doi.org/10.1016/0021-9797(87)90426-7

[65] I. J. Mccolm, N. J. Clark, Foming, Shaping and Working of High Performance Ceramics, Blackie, Glasgow, 1998, pp.1-338.

[66] C. Surig, D. Bonnenberg, K. A. Hempel, P. K. Kerduck, H. J. Klaar, C. Sauer, Effects of Variations in Stoichiometry on M-Type Hexaferrites, J. Phys. IV 7 (1997) C1–315.

DOI: https://doi.org/10.1051/jp4:19971124

[67] C. Surig, K. A. Hempel, C. Sauer, Influence of stoichiometry on hexaferrite structure, J. Magn. Magn. Mater. 157–158 (1996) 268-269.

DOI: https://doi.org/10.1016/0304-8853(95)01201-x

[68] W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, Q. Yan, Prepartion and magnetic properties of barium ferrite nanoparticles produced by citrate process, J. Am. Ceram. Soc. 80 (12) (1997) 3258-3262.

DOI: https://doi.org/10.1111/j.1151-2916.1997.tb03264.x

[69] R. C Pullar, M. H. Stacey, M. D. Taylor, A. K. Bhattacharya, Decomposition, shrinkage and evolution with temperature of aligned hexagonal ferrite fibres, Acta Mater. 49 (2001) 4241-4250.

DOI: https://doi.org/10.1016/s1359-6454(01)00304-4

[70] V. K. S. Sankaranarayanan, Q. A. Pankhurst, D. P. E. Dickson, C. E. Johnson. An investigation of particle size effects in ultrafine barium ferrite, J. Magn. Magn. Mater. 125 (1993)199-208.

DOI: https://doi.org/10.1016/0304-8853(93)90838-s

[71] Y. Li, Q. Wang, H. Yang, Synthesis, characterization and magnetic properties on nanocrystalline BaFe12O19 ferrite, Current. Appl. Phys. 9 (6) (2009) 1375-1380.

DOI: https://doi.org/10.1016/j.cap.2009.03.002

[72] J. Liu, W. Zhang, G. Cuijing, Y. Zeng. Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol–gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions, J. Alloys. Compd. 479 (1-2) (2009).

DOI: https://doi.org/10.1016/j.jallcom.2009.01.081

[73] J. Huang, H. Zhuang, W. Li, Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion, Mater. Res. Bull. 38 (1) (2003) 149-159.

DOI: https://doi.org/10.1016/s0025-5408(02)00979-0

[74] A. Ataie, N. R. Piramoon, I. R. Harris, C. B. Ponton, Effect of hydrothermal synthesis environment on the particle morphology, chemistry and magnetic properties of barium hexaferrite, J. Mater. Sci. 30 (1995) 5600-5606.

DOI: https://doi.org/10.1007/bf00356692

[75] M. Jean, V. Nachbaur, J. Bran, J-M. Le Breton. Synthesis and characterization of SrFe12O19 powder obtained by hydrothermal process, J. Alloys. Compd. 496 (1-2) (2010) 306-312.

DOI: https://doi.org/10.1016/j.jallcom.2010.02.002

[76] J-H. Lee, T-B. Byeon, H-J. Lee, C-G. Kim, T-O. Kim, Preparation of Single Crystallites of Barium Ferrite by Hydrothermal Synthesis, J. Phys. IV 7 (1997) C1–751.

DOI: https://doi.org/10.1051/jp4:19971307

[77] C. H. Lin, Z. W. Shih, T. S. Chin, M. L. Wang, Y. C. Yu, Hydrothermal processings to produce magnetic particulates, IEEE Trans. Magn. 26 (1) (1990) 15-17.

DOI: https://doi.org/10.1109/20.50476

[78] X. Liu, J. Wang, L-M. Gan, Ng. Ser-Choon, Improving the magnetic properties of hydrothermally synthesized barium ferrite, J. Magn. Magn. Mater. 195 (1999) 452-459.

DOI: https://doi.org/10.1016/s0304-8853(99)00123-7

[79] B. T. Shirk, W. R. Buesem, Magnetic properties of barium ferrite formed by crystallization of glass, J. Am. Ceram. Soc. 53 (4) (1970) 192-196.

[80] H. Sato, T. Umeda. In: Ferrites, proc ICF6, Kyoto and Tokyo, 1992, p.1122.

[81] S. K. Mishra, L. C. Pathak, V. Rao, Synthesis of submicron Ba-hexaferrite powder by a self-propagating chemical decomposition process, Mater. Lett. 32 (2-3) (1997) 137-141.

DOI: https://doi.org/10.1016/s0167-577x(97)00027-x

[82] K. S Martirosyan, E. Galstyan, S. M Hossain, Y-J. Wang, D. Litvinov, Barium hexaferrite nanoparticles: Synthesis and magnetic properties, Mater. Sci. Eng, B 176 (1) (2011) 8-13.

DOI: https://doi.org/10.1016/j.mseb.2010.08.005

[83] G. Elwin, I. P. Parkin, Q. T. Bui, L. F. Barquin, Self-propagating high-temperature synthesis of SrFe12O19 from reactions of strontium superoxide, iron metal and iron oxide powders, J. Mater. Sci. Lett. 16 (1997) 1237-1239.

[84] Z. X. Tang, S. Nafis, C. M. Sorenson, G. C. H. Hadjipanayis, Magnetic properties of aerosol synthezed barium particles, IEEE Trans. Magn. Magn. 25 (5) (1989) 4236-4238.

DOI: https://doi.org/10.1109/20.42580

[85] V. Pillai, P. Kumar, M. Hou, P. Ayyub, D. Shah, Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors, Adv. Colloid. Interface Sci. 55 (1995) 241-269.

DOI: https://doi.org/10.1016/0001-8686(94)00227-4

[86] D. A. Rawlinson, P. A. Sermon, Nanoparticles of Barium Ferrite Synthesised Using a Water-in-Oil Microemulsion, J. Phys. IV 7 (1997) C1–755.

DOI: https://doi.org/10.1051/jp4:19971309

[87] J. Dufour, L. Lopez, A. Formoso, C. Negro, R. Latorre, F. Lopez-Mateos, Mathematical model of goethite synthesis by oxyprecipitation of steel pickling liquors, Chem. Eng. J., Biochem. Eng. 59 (3) (1997) 287-291.

DOI: https://doi.org/10.1016/0923-0467(94)02950-4

[88] J. Dufour, R. Latorre, C. Negro, E. M. Alcalá, A. Formoso, F. Lopez-Mateos, Protocol for the synthesis of Ba-hexaferrites with prefixed coercivities, J. Magn. Magn. Mater. 172 (3) (1997) 308-316.

DOI: https://doi.org/10.1016/s0304-8853(97)00145-5

[89] J. Dufour, R. Latorre, E. M. Alcala, C. Negro, A. Formoso, F. Lopez-Mateos, Synthesis of M-type hexaferrites from steel pickling liquors (ID 109), J. Magn. Magn. Mater. 157–158 (1996) 125-126.

DOI: https://doi.org/10.1016/0304-8853(95)01057-2

[90] H. Stablein, In: Wohlfarth EP, editor. Ferromagnetic materials, v 3. Amsterdam: North-Holland Physics Publishing, 1982, p.441–602.

[91] W. A. Kaczmarek, B. W. Ninham, Application of Mechanochemistry in Ferrite Materials Technology, J. Phys IV 7 (1997) C1–47.

DOI: https://doi.org/10.1051/jp4:1997106

[92] H. M. Durr, Production of Ferrite Granules According to the Vacuum Hot Steam Process (VHSP), J. Phys. IV 7 (1997) C1–57.

DOI: https://doi.org/10.1051/jp4:1997109

[93] M. Sagawa, H. Nagata, T. Watanabe, O. Itatani, Rubber Isostatic Pressing (RIP) for Ferrite Magnets, J. Phys IV 7 (1997) C1–307.

DOI: https://doi.org/10.1051/jp4:19971120

[94] N. Horiishi, S. Yamamoto. In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1041.

[95] J. Ding, T. Tsuzuki, P. G. Mccormick, Ultrafine BaFe12O19 powder synthesised by mechanochemical processing, J. Magn. Magn. Mater. 177–181 (2) (1998) 931-932.

DOI: https://doi.org/10.1016/s0304-8853(97)00858-5

[96] G. F Austin, G. D Mctaggart. In: Wang FFY (Ed. ), Treatise on Materials Science and Technology, V. 9, New York: Academic Press; 1976, p.35.

[97] H. G. Richter, H. Voller, Dew-T. Ber, 8 (1968) 214.

[98] T. Suzuki, J. Magn. Soc. Jpn. 15 (1991) 833.

[99] Y. Goto, K. Takahashi, Phase diagram of the SrO-Fe2O3 system in it´s Fe2O3-rich region and the growth of SrO. 6 Fe2O3 single crystal in composition deviated melts, J. Jpn. Soc. Powd. Powd. Metall. 17 (5) (1971) 193-197.

DOI: https://doi.org/10.2497/jjspm.17.193

[100] K. Goto, J. Jpn. Soc. Powd. Powd. Metall. 18 (6) (1972) 209-216. (Title in Japanese).

[101] Y. Goto, M. Higashimoto, K. Takahashi, Equilibrium oxygen pressure over polycrystalline SrFe12O19 phase and its nonstoichiometry, J. Jpn. Soc. Powd. Powd. Metall. 21(1) (1974) 21-25.

[102] S. B. Narang, L. S. Hudiara, Microwave dielectric properties of M-Type barium, calcium and strontium hexaferrite substituted with Co and Ti, J. Ceram. Process. Res. 7 (2) (2006) 113-116.

[103] N. Langhof, D. Selfert, M. Göbbels, J. Töpfer, Reinvestigation of the Fe-rich part of the pseudo-binary system SrO–Fe2O3, J. Solid. State Chem. 182 (2009) 2409-2416.

DOI: https://doi.org/10.1016/j.jssc.2009.05.039

[104] E. Otsuki, Th. Matsuzawa, Magnetic Properties of SrO. nFe2O3 Powder Synthesized by Self-Combustion Process, J. Phys. IV 7 (1997) C1–323.

DOI: https://doi.org/10.1051/jp4:19971128

[105] R. C. Pullar, M. D. Taylor, A. K. Bhattacharya, Halide removal from BaM (BaFe12O19) and SrM (SrFe12O19) ferrite fibers via a steaming process, J. Mater. Res. 16 (11) (2001) 3162-3169.

DOI: https://doi.org/10.1557/jmr.2001.0436

[106] L. A. Garcıa-Cerda, O. S. Rodrıguez-Fernández, P. J. Reséndiz-Hernández, Study of SrFe12O19 synthesized by the sol–gel method, J. Alloys. Compd. 369 (1-2) (2004) 182-184.

DOI: https://doi.org/10.1016/j.jallcom.2003.09.099

[107] S. A. Seyyed Ebrahimi, A. J. Williams, N. Martinez, A. Ataie, A. Kianvash, C. B. Ponton, I. R. Harris, Treatment of Strontium Hexaferrite Powder Synthesized Conventionally to Produce High Coercivity, J. Phys. IV 7 (1997) C1–325.

DOI: https://doi.org/10.1051/jp4:19971129

[108] A. Ataie, S. Heshmati-Manesh, Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method, J. Euro. Ceram. Soc. 21 (10-11) (2001) 1951-(1955).

DOI: https://doi.org/10.1016/s0955-2219(01)00149-2

[109] H. Kojima, C. Miyakawa, Bull. Res. Inst. Sci. Meas. 13 (1965) 105.

[110] H. Kojima, In: Ferromagnetic Materials, Vol. 3. Amsterdam: North-Holland Physics Publishing; 1982, p.305–91.

[111] W. Berger, F. Pawlek, Arch Eisenhuttenwesen 28 (1957) 101.

[112] L. G. Van Uitert, Magnetic induction and coercive force data on members series BaAlxFe12-xO19 and related oxides, J. Appl. Phys. 28 (3) (1957) 317-319.

DOI: https://doi.org/10.1063/1.1722738

[113] R. Grossinger, M. Kupferling, J. C. Tellez Blanco, G. Wiesinger, M. Muller, G. Hilscher, Rare earth substitutions in M-type ferrites, IEEE Trans. Magn. 39 (5) (2003) 2911-2913.

DOI: https://doi.org/10.1109/tmag.2003.815745

[114] G. Litsardakis, A. C Stergiou, J. Giorgiou, S. Sklavounos, D. Samaras, M. Pernet, Non-stoichiometric barium ferrite particles for high-density magnetic recording, J. Magn. Magn. Mater. 120 (1-3) (1993) 58-60.

DOI: https://doi.org/10.1016/0304-8853(93)91286-g

[115] L. A. Bashkirov, Y. L. Kostyushko, Formation of ferrite-chromites BaFe10Cr2O19 and SrFe10Cr2O19 in the solid-phase reaction of Fe2O3 and Cr2O3 with barium or strontium carbonate, Russ. J. Appl. Chem. 78 (3) (2005) 351-355.

DOI: https://doi.org/10.1007/s11167-005-0294-z

[116] P. Batti, G. Sloccari, One zone int the ternary system SrO-Fe2O3 corresponding to an Fe/Sr ration of one, Ann. Chim (Rome) 57 (1967) 777-804.

[117] N. J. Shirtcliffe, S. Thompson, E. S. O'Keefe, S. Appleton, C. C. Perry, Mater, Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis, Res. Bull. 42 (2) (2007) 281-287.

DOI: https://doi.org/10.1016/j.materresbull.2006.06.001

[118] Y. Liu, M. G. B. Drew, J. Wang, M. Zhang, Y. Liu, Efficiency and purity control in the preparation of pure and/or aluminum-doped barium ferrites by hydrothermal methods using ferrous ions as reactants, J. Magn. Magn. Mater. 322 (3) (2010).

DOI: https://doi.org/10.1016/j.jmmm.2009.09.062

[119] A. Deschamps, F. Bertaut, Sur la substitution de barym par une terre rare dans i´hexaferrite BaO. 6Fe2O3, C. R. Hebd. Seans. Acad. Sci. 244 (1957) 3069-3072.

[120] J. M. P. J. Verstegen, Luminescence of Mn2+ in SrGa12O19, LaMgGa11O19, and BaGa12O19, J. Solid. State Chem. 7 (4) (1973) 468-473.

DOI: https://doi.org/10.1016/0022-4596(73)90176-x

[121] T. M Perekalina, M. A. Vinnik, R. I. Zvereva, A. D. Shchurova, Magnetic porperties of hexagonal ferrites weak Exchange coupling between subllatices. Zh. Eksp. Teor. Fiz. 59 (1970) 1490-1493.

[122] T. M. Perakalina, V. P. Cheparin, Fiz. Tverd Tela 9 (1967) 217.

[123] R. M. Cornell, U. Schwertmann, In: The Iron Oxides, Weinheim (Germany): VCH; (1996).

[124] K. Watanabe, J. Kawabe, Growth and characterization of minute BaFe12–2xTixCoxO19 crystals from high-temperature solution, J. Mater. Chem. 7 (9) (1997) 1797-1800.

DOI: https://doi.org/10.1039/a702126g

[125] B. Y. Wong, X. Sui, D. E. Laughlin, M. H. Kryder, Microstructural investigations of barium ferrite longitudinal thin‐film media, J. Appl. Phys. 75 (10) (1994) 5966-5968.

DOI: https://doi.org/10.1063/1.355527

[126] X. Batlle, M. G. Del Muro, A. Labarta, Interaction effects and energy barrier distribution on the magnetic relaxation of nanocrystalline hexagonal ferrites, Phys. Rev. B 55 (10) (1997) 6440-6445.

DOI: https://doi.org/10.1103/physrevb.55.6440

[127] D. Autissier, A. Podembski, C. Jacquiod, Microwaves Properties of M and Z Type Hexaferrites, J. Phys. IV 7 (1997) C1–409.

DOI: https://doi.org/10.1051/jp4:19971165

[128] F. Leccabue, R. Panizzieri, S. Garcia, N. Suarez, J. L. Sanchez, Magnetic and mössbauer study of rare-earth-substituted M-, W- and X-type hexagonal ferrites, J. Mater. Sci. 25 (6) (1990) 2765-2770.

DOI: https://doi.org/10.1007/bf00584876

[129] J. F. Wang, C. B. Ponton, I. R. Harris, A study of Pr-substituted strontium hexaferrite by hydrothermal synthesis, J. Alloys. Compd. 403 (1-2) (2005) 104-109.

DOI: https://doi.org/10.1016/j.jallcom.2005.05.025

[130] J. F. Wang, C. B. Ponton, R. Grossinger, I. R. Harris, A study of La-substituted strontium hexaferrite by hydrothermal synthesis, J. Alloys. Compd. 369 (1-2) (2004) 170-177.

DOI: https://doi.org/10.1016/j.jallcom.2003.09.097

[131] H. Yamamoto, M. Isono, T. Kobayashi. Magnetic properties of Ba–Nd–Co system M-type ferrite fine particles prepared by controlling the chemical coprecipitation method, J. Magn. Magn. Mater. 295 (1) (2005) 51-56.

DOI: https://doi.org/10.1016/j.jmmm.2004.12.038

[132] C. A. Stergiou, I. Manolakis, T. V. Yioultsis, G. Litsardakis, Dielectric and magnetic properties of new rare-earth substituted Ba-hexaferrites in the 2–18 GHz frequency range, J. Magn. Magn. Mater. 322 (9-12) (2010) 1532-1535.

DOI: https://doi.org/10.1016/j.jmmm.2009.07.082

[133] D. Samaras, J. Georgiou, S. Panas, G. Litsardakis, Hexagonal ferrite particles for perpendicular recording prepared by ion exchange, IEEE Trans. Magn. 26 (1) (1990) 18-20.

DOI: https://doi.org/10.1109/20.50477

[134] T-T. Fang, J. B. Hwang, F. S. Shiau, The role of silica in sintering barium ferrite, J. Mater. Sci. Let. 8 (12) (1989) 1386-1388.

DOI: https://doi.org/10.1007/bf00720195

[135] F. Haberey, R. Leckebusch, M. Rosenberg, K. Sahl, Preparation and magnetic properties of LPE-grown hexagonal strontium aluminoferrite films, Mater. Res. Bull. 15 (4) (1980) 493-500.

DOI: https://doi.org/10.1016/0025-5408(80)90056-2

[136] H. Taguchi, Recent Improvements of Ferrite Magnets, J. Phys. IV 7 (1997) C1–299.

[137] O. T. Ozkan, H. Erkalfa, The effect of B2O3 addition on the direct sintering of barium hexaferrite, J. Eur. Ceram. Soc. 14 (4) (1994) 351-358.

DOI: https://doi.org/10.1016/0955-2219(94)90072-8

[138] M. Tokar, Microstructure and Magnetic Properties of Lead Ferrite, J. Am. Ceram. Soc. 52 (6) (1969) 302-306.

[139] M. P. Harmer, H. M. Chan, D. M. Smyth, Compositional control of ceramic microstructures - an overview, In: Mater. Res. Soc. Symp. Proc. (defect prop. process, high tech non-metal mater), 1986, p.125.

[140] F. Kools, Reaction induced grain growth impediment during sintering of strontium hexaferrite with silica addition, Ber Dt. Keram. Ges. 55 (1978) 301-304.

DOI: https://doi.org/10.1016/0167-2738(85)90049-9

[141] M. Hillert, On the theory of normal and abnormal grain growth, Acta Metall. 13 (3) (1965) 227-238.

[142] Y. Chen, D. E. Laughlin, X. Ma, M. H. Kryder, Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films, J. Appl. Phys. 81 (8) (1997) 4380-4382.

DOI: https://doi.org/10.1063/1.364830

[143] S. Ram, Crystallisation of BaFe12O19 hexagonal ferrite with an aid of B2O3 and the effects on microstructure and magnetic properties useful for permanent magnets and magnetic recording devices, J. Magn. Magn. Mater. 82 (1) (1989) 129-150.

DOI: https://doi.org/10.1016/0304-8853(89)90073-5

[144] H. Taguchi, T. Takeishi, K. Suwa, K. Masuzawa, Y. Minachi, High Energy Ferrite Magnets, J. Phys. IV 7 (1997) C1–311.

DOI: https://doi.org/10.1051/jp4:19971122

[145] F. Haberey, F. Kools, In: Proc ICF4, Japan, 1980, p.356.

[146] J-H. Seok, J-H. Kim, S-H. Cho, In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1126.

[147] F.J. A. Den Broeder, P. E.C. Franken, In: L. M. Levinson, editor. Grain boundary phenomena in electronic ceramics, The American Ceramic Society, Columbus, Ohio, 1981, p.494.

[148] I. J. Mccolm, N. J. Clark, In: High Performance Ceramics, London: Blackie, (1988).

[149] K. P. Belov, L. I. Koroleva, R. Z. Levitin, Y. V. Jergin, A. V. Pedko, Die magnetokristalline anisotropie hexagonaler ferromagnetischer stoff in de nane des Curie-punktes, Phys. Status. Solidi B 12 (1965) 219-224.

DOI: https://doi.org/10.1002/pssb.19650120120

[150] C. Heck, In: Magnetic Materials and their Applications, London: Butterworth, (1974).

[151] H. B. G. Casimir, J. Smit, U. Enz, J. F. Fast, H. P. J Wijn, E. W. Gorter, Rapport sur quelques recherches dans le domaine du magnetism aux laboratories Philips, J Phys Rad. 20 (1959) 360-373.

DOI: https://doi.org/10.1051/jphysrad:01959002002-3036000

[152] F. K. Lotgering, Magnetic anisotropy and saturation of LaFe12O19 and some related compounds, J. Phys. Chem. Solids 35 (12) (1974) 1633-1639.

DOI: https://doi.org/10.1016/s0022-3697(74)80176-9

[153] J. C. Slovczewski, J. Appl. Phys. Lett. 32 (1961) 2535.

[154] P. B. Braun, Crystal structure of a new group of ferromagnetic compounds, Philips Res. Rep. 12 (6) (1957) 491-548.

[155] M. Takahashi, Induced Magnetic Anisotropy of Evaporated Films Formed in a Magnetic Field, J. Appl. Phys. 33 (3) (1962) 1101-1107.

DOI: https://doi.org/10.1007/978-1-4899-6391-8_30

[156] L. Neel, Propertiés magnétiques des ferrites: ferrimagnétisme et antiferromagnétisme, Ann. De Phys 3 (1948) 137-198.

DOI: https://doi.org/10.1051/anphys/194812030137

[157] P. W Anderson, Generalizations of the weiss molecular field theory of antiferromagnetism, Phys. Rev. 79 (4) (1950) 705-710.

DOI: https://doi.org/10.1103/physrev.79.705

[158] H. Richter, H. Dietrich, On the magnetic properties of fined-milled barium and strontium ferrite. IEEE Trans. Magn. Magn. 4 (3) (1968) 263-267.

DOI: https://doi.org/10.1109/tmag.1968.1066284

[159] R. F. Fischer, H. Kronmuller, Importance of ideal grain boundaries of high remanent composite permanent magnets, J. Appl. Phys. 83 (6) (1998) 3271-3276.

DOI: https://doi.org/10.1063/1.367095

[160] K. J. Sixtus, K. J. Kronenberg, R. K. Tenzer, Investigations on Barium Ferrite Magnets, J. Appl. Phys. 7 (9) (1956) 1051-1058.

[161] J. J. Went, G. W Rathenau, E. W. Gorter, G. W. Van Oosterhout, Ferroxdure: a class of new permanent magnets materials, Philips. Techn. Rev. 13 (1951/1952) 194-208.

[162] O. Kitakami, K. Goto, T. Sakurai, A Study of the Magnetic Domains of Isolated Fine Particles of Ba Ferrite, Jpn. J. Appl. Phys. 27 (1988) 2274-2277.

DOI: https://doi.org/10.1143/jjap.27.2274

[163] L. Rezlescu, E. Rezlescu, P. D. Popa, N. Rezlescu. Fine barium hexaferrite powder prepared by the crystallisation of glass, J. Magn. Magn. Mater. 193 (1-3) (1999) 288-290.

DOI: https://doi.org/10.1016/s0304-8853(98)00442-9

[164] T. Hirayama, Q. Ru, T. Tanki, A. Tonomura, Observation of magnetic‐domain states of barium ferrite particles by electron holography, Appl. Phys. Lett. 63 (3) (1993) 418-421.

DOI: https://doi.org/10.1063/1.110011

[165] J. Dho, E. K. Lee, J. Y. Park, N. H. Hur, Effects of the grain boundary on the coercivity of barium ferrites, J. Magn. Magn. Mater. 285 (1-2) (2005) 164-168.

[166] D. J. Craik, E. H Hill, Coercivity mechanisms in oxide magnets, J. Phys. Colloque 38 (1977) C1–39.

[167] J-H. Choy, J-B. Yoon and K-S. Han, Structural Analysis of Poor Crystalline Ferrite Precursor, γ-FeOOH, Derived from Topotactic Hydrolysis of FeOCl, J Phys IV 7 (1997) C1–335.

DOI: https://doi.org/10.1051/jp4:19971134

[168] F. M. M. Pereira, C. A. R. Junior, M. R. P. Santos, R. S. T. M Sohn, F. N. A Freire, J. M. Sasaki, J. A. C. Paiva, A. S. B. Sombra, Structural and dielectric spectroscopy studies of the M-type barium strontium hexaferrite alloys (BaxSr1–xFe12O19), J. Mater. Sci: Mater. Electron. 19 (2008).

DOI: https://doi.org/10.1007/s10854-007-9411-5

[169] V. K. S. Sankaranarayanan, D. C. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method, J. Magn. Magn. Mater. 153 (3) (1996) 337–346.

DOI: https://doi.org/10.1016/0304-8853(95)00537-4

[170] B. J. Evans, F. Grandjean, A. P. Lilot, R. H. Vogel, A. Gerard, 57Fe hyperfine interaction parameters and selected magnetic properties of high purity MFe12O19 (M = Sr, Ba), J. Magn. Magn. Mater. 67 (1) (1987)123–129.

DOI: https://doi.org/10.1016/0304-8853(87)90728-1

[171] D. Dyar, A review of Mössbauer data on inorganic glasses: the effects of composition on iron valency and coordination, Americ. Mineral. 70 (3–4) (1985) 304–316.

[172] W. Roos, H. Haak, C. Voight, K. A. Hempel, Microwave absorption and static magnetic properties of coprecipitated barium ferrire, J Phys Colloque 38 (1977) C1–35.

DOI: https://doi.org/10.1051/jphyscol:1977106

[173] H. S. Shinind, S-J. Kwon, In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1402.

[174] G. Mendoza-Suárez, M. C. Cisneros-Morales, M. M. Cisneros-Guerrero, K. K. Johal, H. Mancha-Molinar, O. E. Ayala-Valenzuela, Influence of stoichiometry and heat treatment conditions on the magnetic properties and phase constitution of Ba-ferrite powders prepared by sol–gel, Mater. Chem. Phys. 77 (3) (2002).

DOI: https://doi.org/10.1016/s0254-0584(02)00141-4

[175] C. Sudakar, G. N. Subbanna, T. R. N. Kutty, Nanoparticles of Barium Hexaferrite by Gel to Crystallite Conversion and their Magnetic Properties, J. Electroceram. 6 (2) (2001) 123-134.

[176] C. Sudakar, G. N. Subbanna, T. R. N. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties, J. Magn. Magn. Mater. 263 (3) (2003) 253-268.

DOI: https://doi.org/10.1016/s0304-8853(02)01572-x

[177] C. S Wang, F. L. Wei, M. Lu, D. H. Han, Z. Yang, Structure and magnetic properties of Zn–Ti-substituted Ba-ferrite particles for magnetic recording, J. Magn. Magn. Mater. 183 (1-2) (1998) 241-246.

DOI: https://doi.org/10.1016/s0304-8853(97)01070-6

[178] T-S. Chin, S. L. Hsu, M. C. Deng, Barium ferrite particulates prepared by a salt-melt method, J. Magn. Magn. Mater. 120 (1-3) (1993) 64-68.

DOI: https://doi.org/10.1016/0304-8853(93)91288-i

[179] T. Kagotani, H. Takamura, M. Okada, M. Homma. In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1137.

[180] M. Chiba, C. Uemura, Y. Koizumi. In: Ferrites, Proc. ICF6, Kyoto and Tokyo, 1992, p.89.

[181] K. Haneda, A. H. Morrish, Mössbauer spectroscopy of magnetic small particles with emphasis on barium ferrite, Phase Trans. 24–26 (1990) 661-690.

DOI: https://doi.org/10.1080/01411599008210248

[182] W. A. Kaczmarek, A. Calka, B. W. Ninham. Preparation of fine, hollow, spherical BaFe12O19 powders, Mater. Chem. Phys. 32 (1) (1992) 43-48.

DOI: https://doi.org/10.1016/0254-0584(92)90246-5

[183] H. Fahlenbrach, Werkst U. Betr. 90 (1957) 735.

[184] A. L. Stuijts, G. W. Rathenau, G. H. Weber, Ferroxdure I and II, anisotropic permanent magnet materials, Philips Techn. Rev. 16 (1954) 141-147.

[185] A. J. Moulson, J. M. Herbert, Electroceramics: materials, properties, application. 2 ed. John Wiley & Sons Ltd., (2003) 557 p.

[186] E. W. Gorter, Saturation magnetization and crystal chemistry of ferromagnetic oxides, Philips Res. Repts. 9 (1954) 403-443.

[187] E. Ogawa, O. Kubo, In: Ferrites, Proc. ICF6 Tokyo and Kyoto, 1992. p.1410.

[188] G. Mendoza-Suárez, L. P. Rivas-Vázquez, A. F. Fuentes, J. I. Escalante-Garcia, O. E. Ayala-Valenzuela, E. Valdéz, Preparation and magnetic properties of Zn–Ti subtituted Ba-ferrite powders, Mater. Lett. 57 (4) (2002) 868-872.

DOI: https://doi.org/10.1016/s0167-577x(02)00887-x

[189] A. H. Mones, E. Banks, Cation substitutions in BaFe12O19, J. Phys. Chem. Solids 4 (3) (1958) 217-222.

[190] U. N Mulay, A. P. B. Sinha, Synthesis and properties of some new ferrites of formula La3+Me2+Fe3+. 11O19, Indian J. Pure. Appl. Phys. 8 (1970) 412.

[191] J. C Corral-Huacuz, G. Mendoza-Suárez, Preparation and magnetic properties of Ir–Co and La–Zn substituted barium ferrite powders obtained by sol–gel, J. Magn. Magn. Mater. 242–245 (2002) 430-433.

DOI: https://doi.org/10.1016/s0304-8853(01)01141-6

[192] C. Hashimoto, T. Kimura, K. Hashimoto, H. Kimura, K. Haneda. In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.1414.

[193] P. Brahma, A. K. Giri, D. Chakravorty, M. Roy, D. Bahadur, Magnetic properties of As2O3- and Sb2O3-doped Ba-M hexagonal ferrites prepared by the sol-gel method, J. Magn. Magn. Mater. 117 (1-2) (1992) 163-168.

DOI: https://doi.org/10.1016/0304-8853(92)90306-9

[194] Z. Simsa, R. Gerber, V. Lewis, V. A. M. Brabers, Perminvar-Like Behaviour in some Hexagonal Ferrites, J. Phys. IV 7 (1997) C1–197.

DOI: https://doi.org/10.1051/jp4:1997173

[195] Y. Kaneko, S. Anamoto, A. Hamamura, J. Jpn. Inst. Powder. Powder. Metall. 34 (1987) 169.

[196] L. Jahn, H. G. Muller, The coercivity of hard ferrites single crystal, Phys Status Solidi B 35 (2) (1969) 723-730.

[197] B. T. Shirk, W. R. Buessm, Temperature dependence of Ms and K1 of BaFe12O19 and SrFe12O19 single crystals, J Appl. Phys. 40 (3) (1969) 1294-1297.

DOI: https://doi.org/10.1063/1.1657636

[198] A. Cochardt, Modified Strontium Ferrite, a New Permanent Magnet Material, J. Appl. Phys. 34 (4) (1963) 1273-1275.

[199] W. A. Kaczmarek, B. Idzikowski, K-H. Muller, XRD and VSM study of ball-milled SrFe12O19 powder, J. Magn. Magn. Mater. 177–181 (2) (1998) 921-922.

DOI: https://doi.org/10.1016/s0304-8853(97)00839-1

[200] C. Tanasoiu, P. Nicolau, C. Miclea, Prepartion and magnetic properties of high coercivity strontium ferrite micropowers obtainded by extend wet milling, IEEE Trans. Magn. Magn. 12 (6) (1976) 980-982.

DOI: https://doi.org/10.1109/tmag.1976.1059141

[201] A. Ataie, I. R. Harris, C. B Ponton, Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions, J. Mater. Sci. 30 (6) (1995) 1429-1433.

DOI: https://doi.org/10.1007/bf00375243

[202] J-H. Seok, J-J. Kim, B-K. Lee, S-H. Cho, In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.180.

[203] E. Wu, S. J. Campbell, W. A. Kaczmarek, A Mössbauer effect study of ball-milled strontium ferrite, J. Magn. Magn. Mater. 177–181 (1) (1998) 255-256.

DOI: https://doi.org/10.1016/s0304-8853(97)00910-4

[204] V. V. Pankov, M. Pernet, P. Germi, P. Mollard, Fine hexaferrite particles for perpendicular recording prepared by the coprecipitation method in the presence of an inert component, J. Magn. Magn. Mater. 120 (1-3) (1993) 69-72.

DOI: https://doi.org/10.1016/0304-8853(93)91289-j

[205] A. Yazaki, D. Endo, T. Uchida, Y. Nagata, K. Ohta, In: Ferrites, Proc. ICF6, Tokyo and Kyoto, 1992, p.385.

[206] H. Taguchi, F. Hirata, T. Takeshi, T. Mori, In: Ferrites, Proc. ICF, Tokyo and Kyoto, 1992, p.1118.

[207] N. K. Dung, D. L Minh, B. T. Cong, N. Chau, N. X. Phuc, The Influence of La2O3 Substitution on the Structure and Properties of Sr Hexaferrite, J. Phys. IV 7 (1997) C1–313.

DOI: https://doi.org/10.1051/jp4:19971123

[208] X Liu, P. Hernández-Gómez, K. Huang, S. Zhou, Y. Wang, X. Cai, H. Sun, B. Ma, Research on La3+- Co2+-substituted strontium ferrite magnets for high intrinsic coercive force, J. Magn. Magn. Mater. 305 (2) (2006) 524-528.

DOI: https://doi.org/10.1016/j.jmmm.2006.02.096

[209] H. Ismael, M. K. El Nimr, A. M. Abou El Ata, M. A. El Hiti, M. A. Ahmed, A. A. Murakhowskii, Dielectric behavior of hexaferrites BaCo2−xZnxFe16O27, J. Magn. Magn. Mater. 150 (3) (1995) 403–408.

DOI: https://doi.org/10.1016/0304-8853(95)00278-2

[210] Z. Haijun, L. Zhichao, M. Chenliang, Y. Xi, Z. Liangying, W. Mingzhong, Preparation and microwave properties of Co- and Ti-doped barium ferrite by citrate sol–gel process, Mater. Chem. Phys. 80 (1) (2003), 129–134.

DOI: https://doi.org/10.1016/s0254-0584(02)00457-1

[211] Z. Haijun, L. Zhichao, M. Chenliang, Y. Xi, Z. Liangying, W. Mingzhong, Complex permittivity, permeability, and microwave absorption of Zn- and Ti-substituted barium ferrite by citrate sol–gel process, Mater. Sci. Eng. B 96 (2002), 289–295.

DOI: https://doi.org/10.1016/s0921-5107(02)00381-1

[212] J. C. Maxwell, Electricity and Magnetism, Vol. 1, Oxford University Press, New York, 1973, p.828.

[213] C. G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies, Phys. Rev. 83 (1) (1951) 121–124.

DOI: https://doi.org/10.1103/physrev.83.121

[214] S. E. Jacobo, W. G. Fano, A. C. Razzite, N. D. Digiovanni, V. Trainotti, Dielectric properties of barium hexaferrite in the microwave range. In: Conference on Electrical Insulation and Dielectric Phenomena, Annual Report. Publication Date: 25–28 October, Vol. 1, 1998, p.273.

DOI: https://doi.org/10.1109/ceidp.1998.733967

[215] P. V. Reddy, T. S. Rao, Dielectric behaviour of mixed Li-Ni ferrites at low frequencies, J. Less. Com. Metals 86 (1982) 255–261.

DOI: https://doi.org/10.1016/0022-5088(82)90211-9

[216] B. K. Kuanr, G. P. Srivastava. Dispersion observed in electrical properties of titanium‐substituted lithium ferrites, J. Appl. Phys. 75 (10) (1994) 6115–6117.

DOI: https://doi.org/10.1063/1.355478

[217] M. A. El Hiti, Dielectric behaviour in Mg–Zn ferrites, J. Magn. Magn. Mater. 192 (2) (1999) 305–313.

[218] F. M. M. Pereira, M. R. P. Santos, R. S. T. M. Sohn, J. S. Almeida, A. M. L. Medeiros, M. M. Costa, A. S. B. Sombra. Magnetic and dielectric properties of the M-type barium strontium hexaferrite (BaxSr1-xFe12O19) in the RF and microwave (MW) frequency range, J. Mater Sci: Mater. Electron. 20 (2009).

DOI: https://doi.org/10.1007/s10854-008-9744-8

[219] A. Bahadoor, Y. M. N. Afsar, Complex permittivity and permeability of barium and strontium ferrite powders in X, KU, and K-band frequency ranges, J. Appl. Phys. 97 (2005) 10F105–10F105-3.

DOI: https://doi.org/10.1063/1.1853633

[220] G. Kumar, K. P. Ray, Broadband microstrip antennas, Artech House, Norwood, MA. (2003).

[221] R. Garg, P. Bhartia, I. Bahl, A. Ittipiboon, Microstrip antenna design handbook, Artech House, Norwood, MA. (2001).

[222] D. M. Pozar, Microstrip antenna aperture-coupled to a microstripline, Electron. Lett. 21 (2) (1985), 49–50.

DOI: https://doi.org/10.1049/el:19850034

[223] M. Ali, R. Dougal, G. Yang, and H. S. Hwang, Wideband circularly polarized microstrip patch antenna for wireless LAN applications, IEEE Antennas Propag Int Symp Digest 2, Columbus, OH (2003) 34–37.

DOI: https://doi.org/10.1002/mop.20796

[224] M. W. McAllister, S .A. Long, G. L. Conway, Rectangular dielectric resonator antenna, IEEE Electron. Lett. 19 (6) (1983) 218–219.

DOI: https://doi.org/10.1049/el:19830150

[225] S. Long, M. McAllister, L. Shen, The resonant cylindrical dielectric cavity antenna, IEEE Trans. Antennas Propag. 31 (3) (1983), 406–412.

DOI: https://doi.org/10.1109/tap.1983.1143080

[226] M. W. Mcallister, S. A. Long, Resonant hemispherical dielectric antenna, IEEE Electron. Lett. 20 (16) (1984) 657–659.

DOI: https://doi.org/10.1049/el:19840450

[227] A. Petosa, A. Ittipiboon, Y. Antar, Broadband dielectric resonator antennas, In: Dielectric resonator antennas, Research Studies Press Ltd., Hertfordshire, England, UK, 2003, p.177–208.

DOI: https://doi.org/10.1109/aps.2004.1329868

[228] A. Petosa, Dielectric resonator antenna Handbook, Norwood: Artech House, (2007).

[229] A. Petosa, R. K. Mongia, M. Cuhaci, J. S. Wight, Magnetically tunable ferrite resonator antenna, IEEE Electron. Lett. 30 (13) (1994) 1021-1022.

DOI: https://doi.org/10.1049/el:19940698

[230] A. Petosa, D. J. Roscoe, A. Ittipibooii, M. Cuhaci, Antenna research at the Communications Research Centre, IEEE Antennas Propag. Mag. 38 (5) (1996) 7-18.

DOI: https://doi.org/10.1109/74.544397

[231] B. W. Hakki, P. D. Coleman, A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range, I. R. E. Trans. Microwave Theory Tech. 8 (4) (1960) 402–410.

DOI: https://doi.org/10.1109/tmtt.1960.1124749

[232] W. E. Courtney, Analysis and evaluation of a method of measuring th complex permittivity and permeability of microwave insulators, IEEE Trans. Microwave Theory Tech. MTT-18 (1970) 476–485.

DOI: https://doi.org/10.1109/tmtt.1970.1127271

[233] A. A. Kishk, X. Zhang, A. W. Glisson, D. Kajfez, Numerical analysis of stacked dielectric resonator antennas excited by coaxial probe of wide band applications, IEEE Trans Antennas Propag. 51 (8) (2003), 1996–(2006).

DOI: https://doi.org/10.1109/tap.2003.814735

[234] G. P. Junker, A. A. Kishk, X. Zhang, A. W. Glisson, D. Kajfez, Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode, IEEE Electron. Lett. 30 (2) (1994), 97-98.

DOI: https://doi.org/10.1049/el:19940114

[235] G. P. Junker, A. A. Kishk, X. Zhang, A. W. Glisson, D. Kajfez, Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna, IEEE Electron. Lett. 30 (3) (1994), 177-178.

DOI: https://doi.org/10.1049/el:19940191

[236] K. M. Luk, K. W. Leung, Dielectric resonator antennas, Research Studies Press Ltd. Hertfordshire, England, UK, (2003).

[237] Q. Mohsen, Factors affecting the synthesis and formation of single-phase barium hexaferrite by a technique of oxalate precursor. Am J. Appl. Sci. 7 (7) (2010) 914-921.

DOI: https://doi.org/10.3844/ajassp.2010.914.921

[238] R. Gerber, R. Atkinson, Z. Simsa, Magnetism and magneto-optics of hexaferrite layers, J. Magn. Magn. Mater. 175 (1-2) (1997) 79-89.

DOI: https://doi.org/10.1016/s0304-8853(97)00151-0

[239] C-W. Nan, M. I. Burchurin, S. Dong, D. Viehland, G. Srinvasan, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J Appl Phys. 103 (2008) 031101.

DOI: https://doi.org/10.1063/1.2836410

[240] G. Srinivasan, Magnetoelectric Composites, Ann. Rev. Mater. Res. 40 (2010) 153-178.

[241] I. Lee, Y. Obukhov, G. Xiang, A. Hauser, F. Yang, P. Banerjee, D. V. Pelekhov,P. C. Hammel, Nanoscale scanning probe ferromagnetic resonance imaging using localized modes, Nature 466 (2010) 845-848.

DOI: https://doi.org/10.1038/nature09279