Yttrium Iron Garnet: Properties and Applications Review

Abstract:

Article Preview

Due to a fast progress in the development of communication systems, the dielectric and magnetic ceramics (ferrites) have become attractive to be used in devices. Although the ferrites of the spinel type were the first material to be used in the microwave range, garnets have smaller dielectric losses and, therefore, are chosen for many applications. High demands for modern electric applications in magnetic materials results in new techniques and products being permanently studied and researched, with a consequent appearance of new solutions for a wide applications series. This work presents the study of the ferrimagnetic composite, constituted by Y3Fe5O12 (YIG) and Gd3Fe5O12 (GdIG) phases, through solid state synthetic route and submitted to high-energy mechanical milling. Additionally, experiments were made in order to evaluate the electric and magnetic behavior of the composites at radio frequency and microwave range and then later suggest an adequate technological application. The composites were efficient as ferrite resonator antennas (FRAs) and microstrip antennas (thick films deposited on metalized surface alumina substrate by screen-printing technique), in the microwave frequency range. The experiments with FRAs showed satisfactory results due to the control of the antennas radiation characteristics and their tuning by the use of an external magnetic field. The composite resonators studied in this work can be important to the development of a third generation (3G) wideband antennas to cell phones and other wireless products.

Info:

Periodical:

Solid State Phenomena (Volume 202)

Edited by:

Rajshree B. Jotania and Hardev S. Virk

Pages:

65-96

Citation:

E.J.J. Mallmann et al., "Yttrium Iron Garnet: Properties and Applications Review", Solid State Phenomena, Vol. 202, pp. 65-96, 2013

Online since:

May 2013

Export:

Price:

$38.00

[1] D. Badahur, Current Trends in Applications of Magnetic Ceramic Materials, Bull. Mater. Sci. 15 (1992) 431-439.

[2] A. B. Ustinov, V. S. Tiberkevich, G. Srinivasan, A. N., Slavin, A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, J. V. Mantese, R. Ramer, Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys. 100 (2006).

DOI: https://doi.org/10.1063/1.2372575

[3] J. P. Ganne, R. Lebourgeois, M. Paté, D. Dubreuil, L. Pinier, H. Pascard, The electromagnetic properties of Cu–substituted garnets with low sintering temperature, , J. Eur. Ceram. Soc. 27 (2007) 2771–2777.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.11.054

[4] J. D. Adam, L. E. Davis, G. F. Dionne, E. F. Schloemann, S. N. Stitzer, Ferrite devices and materials, IEEE T. Microw. Theory. 50 (2002) 721-737.

DOI: https://doi.org/10.1109/22.989957

[5] Y.F. Chen, K.T. Wu, Y.D. Yao, C.H. Peng, K.L. You, W.S. Tse, The influence of Fe concentration on Y3Al5-xFexO12 garnets, Microelectron. Eng. 81 (2005) 329–335.

DOI: https://doi.org/10.1016/j.mee.2005.03.028

[6] M. Huang, S. Zhang, Growth and characterization of rare-earth iron garnet single crystals modified by bismuth and ytterbium substituted for yttrium, Mater. Chem. Phys. 73 (2002) 314-317.

DOI: https://doi.org/10.1016/s0254-0584(01)00365-0

[7] R. Valenzuela, Magnetic ceramics, Cambridge University Press, New York, (1994).

[8] M. Barsoum, Fundamentals of Ceramics, McGraw-Hill Companies, Inc., New York, (1997).

[9] B. Ellis, M. J. Geselbracht, B. J. Johnson, G. C. Lisensky, W. R. Robinson, Teaching General Chemistry: A Materials Science Companion, Am. Chem. Soc, Washington, (1993).

[10] P.B.A. Fechine, Estudo das propriedades estruturais e elétricas das granadas ferrimagnéticas GdIGxYIG1-x e suas aplicações em componentes de microondas, doctorate thesis, Universidade Federal do Ceará, Brasil, 2008, p.42.

[11] T. Kimura, H. Takizawa, K. Uheda, T. Endo, M. Shimada, Microwave Synthesis of Yttrium Iron Garnet Powder, J. Am. Ceram. Soc. 81 (1998) 2961–2964.

DOI: https://doi.org/10.1111/j.1151-2916.1998.tb02720.x

[12] R. Y.S. Ahn, M. H. Han, C.O. Kim, Synthesis of yttrium iron garnet precursor particles by homogeneous precipitation, J. Mater. Sci. 31 (1996) 4233-4240.

DOI: https://doi.org/10.1007/bf00356444

[13] D. Sánchez, C. A. Ramos, J. Rivas, P. Vaqueiro, M. A. López-Quintela, Ferromagnetic resonance and magnetic properties of single-domain particles of Y3Fe5O12 prepared by sol-gel method, Physica B. 354 (2004) 104–107.

DOI: https://doi.org/10.1016/j.physb.2004.09.028

[14] V. Buscaglia, F. Caracciolo, C. Bottino, M. Leoni, P. Nanni, Reaction diffusion in the Y2O3- Fe2O3 system, Acta mater. 45 (1997) 1213-1224.

DOI: https://doi.org/10.1016/s1359-6454(96)00246-7

[15] L. B. Kong, J. Ma, H. Huang, Low temperature formation of yttrium aluminum garnet from oxides via a high-energy ball milling process, Mater. Lett. 56 (2002) 344-348.

DOI: https://doi.org/10.1016/s0167-577x(02)00480-9

[16] X. Z. Guo, B. G. Ravi, P. S. Deci, J. C. Hanson, J. Morgolies, R. J. Gambino, J. B. Parise, S. Sampath, Synthesis of yttrium iron garnet (YIG) by citrate–nitrate gel combustion and precursor plasma spray processes, J. Magn. Magn. Mater. 295 (2005).

DOI: https://doi.org/10.1016/j.jmmm.2005.01.007

[17] T. C. Mao, J. C. Chen, Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic, J. Magn. Magn. Mater , 302 (2006) 74-81.

[18] K. Shinagawa, E. Tobita, T. Saito, T. Tsushima, Faraday effect in (Pb2+, Th4+)-substituted magnetic garnets, J. Magn. Magn. Mater. 251 (1998) 177-181.

DOI: https://doi.org/10.1016/s0304-8853(97)00918-9

[19] C.Y. Tsay, C.Y. Liu, K.S. Liu, I.N. Lin, L.J. Hu, T.S. Yeh, Low temperature sintering of microwave magnetic garnet materials, J. Magn. Magn. Mater. 239 (2002) 490-494.

DOI: https://doi.org/10.1016/s0304-8853(01)00669-2

[20] S. C. Zanatta, L. F. Cótica, A. Paesano, Jr., S. N. de Medeiros, J. B. M. da Cunha, B. Hallouche, Mechanosynthesis of Gadolinium Iron Garnet, J. Am. Ceram. Soc . 88 (2005) 3316-3321.

DOI: https://doi.org/10.1111/j.1551-2916.2005.00598.x

[21] A. S. Hudson, Molecular engineering in the design of microwave ferrimagnetic garnets, J. Phys. D: Appl. Phys. 3 (1970) 251-268.

[22] P. B. A. Fechine, E. N. Silva, A. S. de Menezes, J. Derov, J. W. Stewart, A. J. Drehman, I. F Vasconcelos, A. P. Ayala, L. P. Cardoso and A. S. B. Sombra, Synthesis, Structure and Vibracional Properties of GdIGX: YIG1-X Ferrimagnetic Ceramic Matrix Composite, J. Phys. Chem. Solids. 70 (2009).

DOI: https://doi.org/10.1016/j.jpcs.2008.10.008

[23] M. Ristic´, I. Nowik, S. Popovic´, I. Felner, S. Music´, Influence of synthesis procedure on the YIG formation, Mater. Lett. 57 (2003) 2584-2590.

DOI: https://doi.org/10.1016/s0167-577x(02)01315-0

[24] P. Vaqueiro, M. P. Crosnier-Lopez and M. A. López-Quintela, Synthesis and Characterization of Yttrium Iron Garnet Nanoparticles, J. Solid State Chem 126 (1996) 161-168.

DOI: https://doi.org/10.1006/jssc.1996.0324

[25] J. S. Kum, S. J. Kim, In-Bo Shim, C. S. Chul Sung Kim, Magnetic properties of Ce- substituted yttrium iron garnet ferrite powders fabricated using a sol-gel method, J. Magn. Magn. 272 (2004) 2227-2229.

DOI: https://doi.org/10.1016/j.jmmm.2003.12.516

[26] R. D., Shannon, C. T., Prewitt, The crystal and molecular structure of anti-2, 6-dimethyl-4- chloro-N-methylbenzaldoxime, Acta Cryst. B25 (1969) 916-925.

[27] D. L. Rousseau, R. P. Bauman, S. P. S. Porto, Normal mode determination in crystals, J. Raman Spectrosc. 10 (1981) 253-290.

DOI: https://doi.org/10.1002/jrs.1250100152

[28] N. T. J. McDevitt, Substrate issues for the growth of mercury cadmium telluride, Opt. Soc. Am. 57 (1967) 827-834.

[29] A. M. Hofmeister, K. R. Campbell, Infrared spectroscopy of yttrium aluminum, yttrium gallium, and yttrium iron garnets, J. Appl. Phys. 72 (1992) 638-646.

DOI: https://doi.org/10.1063/1.351846

[30] S. Mathur, M. Veith, R. Rapalaviciute, H. Shen, G. F. Goya, W. L. Martins, T. S. Berquo, Molecule derived synthesis of nanocrystalline YFeO3 and investigations on its weak ferromagnetic behavior, Chem. Mater. 16 (2004) 1906-(1913).

DOI: https://doi.org/10.1021/cm0311729

[31] D. Vandormael, F. Grandjean, D. Hautot, G. J. Long, Mössbauer spectral evidence for rhombohedral symmetry in R3Fe5O12 garnets with R = Y, Eu and Dy, J. Phys.: Condens. Matter. 13 (2001) 1759-1772.

DOI: https://doi.org/10.1088/0953-8984/13/8/312

[32] T. C. Gibb, In: Mössbauer Spectroscopy. V. 5. Encyclopedia of inorganic chemistry, John Wiley & Sons, Chichester, 1994, pp.2362-2382.

[33] D. M. Pozar, Microwave Engineering, second edition, John Wiley & Sons, INC., New York, (1998).

[34] A. J. Moulson, J. M. Herbert, Electroceramics: Materials - Properties – Aplications, second edition, John Wiley & Sons Inc., New York, 2003, p.300.

[35] K. - M. Luk, K. - W. Leung, Dielectric Resonator Antennas, Research Studies Press LTD, first edition, Hertfordshire, (2003).

[36] Z. Peng, H. Wang, X. Yao, Dielectric resonator antennas using high permittivity ceramics, Ceram. Int. 30 (2004) 1211-1214.

DOI: https://doi.org/10.1016/j.ceramint.2003.12.079

[37] D. M. Pozar, Microwave Engineering, second edition, John Wiley & Sons Inc., New York, 1998, p.665.

[38] Z. Wu, L. E. Davis, G. Drossos, Cylindrical dielectric resonator antenna arrays, 11th International Conference on Antennas and Propagation, Conference Publication IEEE, 668- 671 (2003).

DOI: https://doi.org/10.1049/cp:20010374

[39] P. B. A. Fechine, M. J. S. da Rocha, M. R. P. Santos, F. M. M. Pereira, A. S. de Menezes, J. M. A. Almeida, J. C. Góes, A. P. Ayala, A. S. B. Sombra, Microstructural and electrical properties of PbTiO3 screen-printed thick films, J. Mater. Sci. - Mater. Electron. 19 (2008).

DOI: https://doi.org/10.1007/s10854-007-9429-8

[40] P. B. A. Fechine, A. F. L. Almeida, F. N. A. Freire, M. R. P. Santos, F. M. M. Pereira, R. Jimenez, J. Mendiola, A. S. B. Sombra, Dielectric Relaxation of BaTiO3(BTO)– CaCu3Ti4O12 (CCTO) composite screen-printed thick films at low temperatures, Mater. Chem. Phys. 96 (2006).

DOI: https://doi.org/10.1016/j.matchemphys.2005.07.030

[41] A. F. L. Almeida, P. B. A. Fechine, J. C. Góes, M. A. Valente, M. A. R. Miranda, A. S. B. Sombra, Dielectric properties of BaTiO3(BTO)–CaCu3Ti4O12 (CCTO) composite screen- printed thick films for high dielectric constant devices in the medium frequency (MF) range, Mater. Sci. EngB, 111 (2004).

DOI: https://doi.org/10.1016/j.mseb.2004.03.027

[42] A. F. L. Almeida, P. B. A. Fechine, J. M. Sasaki, A. P. Ayala, J. C. Góes, D. L. Pontes, W. Margulis, A. S. B. Sombra, Optical and electrical properties of barium titanate-hydroxyapatite, Solid State Sci. 6 (2004) 267-278.

DOI: https://doi.org/10.1016/j.solidstatesciences.2003.12.010

[43] P. B. A. Fechine, A. Távora, L. C. Kretly, A. F. L. Almeida, M. R. P. Santos, F. N. A. Freire, A. S. B. Sombra, Microstrip antenna on a high dielectric constant substrate: BaTiO3(BTO)- CaCu3Ti4O12(CCTO)composite screen-printed thick films, IEEE JEMat. 35 (2006).

DOI: https://doi.org/10.1007/s11664-006-0167-0

[44] A. F. L. Almeida, P. B. A. Fechine, L. C. Kretly, A. S. B. Sombra, BaTiO3 (BTO)- CaCu3Ti4O12 (CCTO) Substrates for Microwave Devices and Antennas, J. Mater. Sci. 41 (2006) 4623-4631.

DOI: https://doi.org/10.1007/s10853-006-0052-5

[45] K. D. A. Saboia, P. B. A. Fechine, M. R. P. Santos, F. N. A. Freire, F. M. M. Pereira, A. S. B. Sombra, Composite Screen-Printed Thick Films for High Dielectric Constant Devices: Bi4Ti3O12(BIT)-CaCu3Ti4O12(CCTO) Films, Polym. Compos. 28 (2007).

DOI: https://doi.org/10.1002/pc.20347

[46] J. K. Plourde, D. F. Linn, H. M. O'Bryan Jr., John Thomson Jr., Ba2Ti9O20 as a Microwave Dielectric Resonator, Am. Ceram. Soc. 58 (1974) 418-420.

[47] A. Goldman, Magnetic Ceramics (Ferrites). In: ASM International – The Materials Information Society. V. 4. Engineered Materials Handbook – Ceramics and Glasses, USA, 1991, p.1161.

[48] P. B. A. Fechine, R. S. T. Moretzsohn, R. C. S. Costa, J. Derov, J. W. Stewart, A. J. Drehman, C. Junqueira, A. S. B. Sombra, Magneto-dielectric properties of the Y3Fe5O12 and Gd3Fe5O12 dielectric ferrite resonator antennas, Microw Opt Technol Lett. 50 (2008).

DOI: https://doi.org/10.1002/mop.23824

[49] E. A. Nenasheva, N. F. Kartenko, High dielectric constant microwave ceramic, J. Eur. Ceram. Soc. 21 (2001) 2697-2701.

[50] Y. Kobayashi, M. Katoh, Microwave Measurement of Dielectric Properties of Low-loss Materials by the Di-electric Rod Resonator Method, IEEE Trans. Microw. Theory Tech. 33 (1985) 586-592.

DOI: https://doi.org/10.1109/tmtt.1985.1133033

[51] R. Grabovickic, Accurate calculations of geometrical factors of Hakki-Coleman shielded dielectric resonators, IEEE Trans. Appl. Supercond. 9 (1999) 4607-4612.

DOI: https://doi.org/10.1109/77.791916

[52] P.B.A. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavín, A.S.B. Sombra, Study of a microwave ferrite resonator antenna, based on a ferrimagnetic composite (Gd3Fe5O12)GdIGX(Y3Fe5O12)YIG1?X, IEEE T. Antenn. Propag. 3 (2009).

DOI: https://doi.org/10.1049/iet-map.2008.0301

[53] P. J. Castro, M. C. A. Nono. Microwave Properties of Barium Nanotitanate Dielectric Resonators, JMO. 1 (1999) 12-19.

[54] S. A. Long, M. W. Mcallister. L. C. Shen, The resonant cylindrical dielectric cavity antenna, IEEE T. Antenn. Propag. 31 (1983) 406-412.

[55] D. Kajfez, P. Guillon, Dielectric Resonators - The Artech House Microwave Library, Artech House, UK, (1986).

[56] G. P. Junker, A. A. Kishk, A. W. Glisson, and D. Kajfez, Effect of air gap on cylindrical dielectric resonator antenna operating in TM01 mode, Electron. Lett. 30 (1994) 97-98.

DOI: https://doi.org/10.1049/el:19940114

[57] G. P. Junker, A. A. Kishk, A. W. Glisson, and D. Kajfez, Effect of an air gap around the coaxial probe exciting a cylindrical dielectric resonator antenna, Electron. Lett. 30 (1994) 177-178.

DOI: https://doi.org/10.1049/el:19940191

[58] R. D. Sánchez, J. Rivas, P. Vaqueiro, M. A. Lopez-Quintela, D. Caeiro. Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method, J. Magn. Magn. Mater. 247 (2002) 92–98.

DOI: https://doi.org/10.1016/s0304-8853(02)00170-1

[59] A. F. L. Almeida, R. R. Silva, H. H. B. Rocha, P. B. A. Fechine, F. S. A. Cavalcanti, M. A. Valente, F. N. A. Freire, R. S. T. M. Sohn, A. S. B. Sombra, Experimental and Numerical Investigation of a Ceramic Dielectric Resonator (DRA): CaCu3Ti4O12 (CCTO), Physica B: Condens. Matter. 403 (2008).

DOI: https://doi.org/10.1016/j.physb.2007.08.222

[60] C. A. Balanis, Antenna Theory: Analysis and Design, second edition, John Wiley & Sons, Inc., New York, (1997).

[61] S. D. Figueiro, E. J. J. Mallmann, J. C. Góes, N. M. P. S. Ricardo, J. C. Denardin, A. S. B. Sombra, P. B. A. Fechine, New ferrimagnetic biocomposite film based in collagen and yttrium iron garnet, Express Polym. Lett. 4 (2010) 790-797.

DOI: https://doi.org/10.3144/expresspolymlett.2010.95

[62] C. C. Silva, A. G. Pinheiro, S. D. Figueiró, J. C. Góes, J. M. Sasaki, M. A. R. Miranda, A. S. B. Sombra, Piezoelectric properties of collagen-nanocrystalline hydroxyapatite composites, J. Mater. Sci. 37 (2002) 2061-(2070).

DOI: https://doi.org/10.1023/a:1015219800490

[63] P. B. A. Fechine, F. M. M. Pereira, M. R. P. Santos, F. P. Filho, A. S. de Menezes, R. S. De Oliveira, J. C. Góes, L. P. Cardoso, A. S. B. Sombra, Microstructure and magneto-dielectric properties of ferrimagnetic composite GdIGX: YIG1-X at radio and microwave frequencies, J. Phys. Chem. Solids. 70 (2009).

DOI: https://doi.org/10.1016/j.jpcs.2009.03.009

[64] E. J. J. Mallmann, J. C. Góes, S. D. Figueiró, N. M. P. S. Ricardo, J. C. Denardin, A. S. B. Sombra, F. J. N. Maia, S. E. Mazzeto, P. B. A. Fechine, Microstructure and magneto-dielectric properties of the chitosan/gelatin-YIG biocomposites, Express Polym. Lett. 5 (2011).

DOI: https://doi.org/10.3144/expresspolymlett.2011.102

[65] Ni Ni, Kongshuang Zhao, Dielectric analysis of chitosan gel beads suspensions: Influence of low crosslinking agent concentration on the dielectric behavior, J. Colloid Interface Sci. 312 (2007) 256-264.

DOI: https://doi.org/10.1016/j.jcis.2007.03.073

[66] G. Maier, Low dielectric constant polymers for microelectronics, Prog. Polym. Sci. 26 (2001) 3-65.

[67] R. Popielarz, C.K. Chiang, Polymer composites with the dielectric constant comparable to that of barium titanate ceramics, MSE B. 139 (2007) 48-54.

DOI: https://doi.org/10.1016/j.mseb.2007.01.035

[68] Y. Kobayashi, T. Tanase, T. Tabata, T. Miwa, M. Konno, Fabrication and dielectric properties of the BaTiO3-polymer nano-composite thin films, J Eur Ceram Soc. 28 (2008) 117-122.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.05.007

[69] E. Marzec, K. Pietrucha, The effect of different methods of cross-linking of collagen on its dielectric properties, Biophys. Chem. 132 (2008) 89-96.

DOI: https://doi.org/10.1016/j.bpc.2007.10.012

[70] S.D. Figueiró, J. C. Góes, R.A. Moreira, A.S.B. Sombra, On the physico-chemical and dielectric properties of glutaraldehyde crosslinked galactomannan-collagen films Carbohydr. Polym,. 56 (2004) 313-320.

DOI: https://doi.org/10.1016/j.carbpol.2004.01.011

[71] M. Rajendran, S. Deka, P. A. Joy, A. K. Bhattacharya, Size-dependent magnetic properties of nanocrystalline yttrium iron garnet powders, J. Magn. Magn. Mater. 301 (2006) 212-219.

DOI: https://doi.org/10.1016/j.jmmm.2005.06.027