Transition Metal Precipitates in Mc Si: A New Detection Method Using 3D-FIB


Article Preview

To investigate transition metal precipitates in Si, synchrotron based measurements, like micro x-ray fluorescence (μXRF) or detailed transmission electron microscopy (TEM) studies, are usually necessary. Transition metals are among the most detrimental defects in multi-crystalline (mc) silicon material for solar cell applications, due to their impact on minority charge carrier lifetime and possible shunt formation. We present another possibility to investigate transition metal precipitates by 3-dimensional focused ion beam (3D-FIB) cutting using a combined scanning electron microscope (SEM) SEM-FIB-system. This method is able to detect transition metal precipitates down to 5 nm in radius and provides additional information about the 3D shape, size and spatial distribution of the precipitates.



Solid State Phenomena (Volumes 205-206)

Edited by:

J.D. Murphy




A. Zuschlag et al., "Transition Metal Precipitates in Mc Si: A New Detection Method Using 3D-FIB", Solid State Phenomena, Vols. 205-206, pp. 136-141, 2014

Online since:

October 2013




[1] O.F. Vyvenko, T. Bounassisi, A.A. Istratov, E.R. Weber, M. Kittler, W. Seifert, Application of synchrotron-radiation-based x-ray microprobe techniques for the analysis of recombination activity of metal precipitated at Si/SiGe misfit dislocations, J. Phys.: Condens. Matter 14 (2002).

DOI: 10.1088/0953-8984/14/48/353

[2] T. Buonassisi, A.A. Istratov, M.D. Picket, M. Heuer, J.P. Kalejs, G. Hahn, M.A. Marcus, B. Lai, Z. Cai, S.M. Heald, T.F. Ciszek, R.F. Clark, D.W. Cunningham, A.M. Gabor, R. Jonczyk, S. Narayanan, E. Sauar, E.R. Weber, Chemical natures and distributions of metal impurities in multicrystalline silicon materials, Prog. Photovolt: Res. Appl. 14 (2006).

DOI: 10.1002/pip.690

[3] M. Seibt, H. Hedemann, A.A. Istratov, F. Riedel, A. Sattler, W. Schröter, Structural and electrical properties of metal silicide precipitates in silicon, phys. stat. sol. (a) 171 (1999) 301-310.

DOI: 10.1002/(sici)1521-396x(199901)171:1<301::aid-pssa301>;2-g

[4] M. Seibt, P. Saring, L. Stolze, M.A. Falkenberg, C. Rudolf, D. Abdelbarey, H. Schuhmann, Transmission electron microscopy investigations of metal-impurity-related defects in crystalline silicon, Solid State Phenom. 178-179 (2011) 275-284.

DOI: 10.4028/

[5] T. Bounassisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, G. Hahn, S. Riepe, J. Isenberg, W. Warta, G. Willeke, T.F. Ciszek, E.R. Weber, Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved x-ray beam-induced current, Appl. Phys. Lett. 87(1) (2005).

DOI: 10.1063/1.1997274

[6] T. Bounassisi, O. Vyvenko, A.A. Istratov, E.R. Weber, G. Hahn, D. Sontag, J.P. Rakotoniaina, O. Breitenstein, J. Isenberg, R. Schindler, Observation of transition metals at shunt locations in multicrystalline silicon solar cells, J. Appl. Phys. 95(3) (2004).

DOI: 10.1063/1.1636252

[7] V. Kveder, M. Kittler, W. Schröter, Recombination activity of contaminated dislocations in silicon: a model describing electron-beam-induced current contrast behavior, Phys. Rev. B 63 (2001) 115208.

DOI: 10.1103/physrevb.63.115208

[8] M.A. Falkenberg, H. Schuhmann, M. Seibt, V. Radisch, Localization and preparation of recombination-active extended defects for transmission electron microscopy analysis, Rev. Sci. Instrum. 81 (2001) 063705.

DOI: 10.1063/1.3443573

[9] S. Braun, A. Zuschlag, B. Raabe, G. Hahn, The origin of background plating, Energy Procedia 8 (2011) 565-570.

DOI: 10.1016/j.egypro.2011.06.183

[10] I.E. Reis, S. Riepe, W. Koch, J. Bauer, S. Beljakowa, O. Breitenstein, H. Habenicht, D. Kreßner-Kiel, G. Pensl, J. Schön, W. Seifert, Effect of impurities on solar cell parameters in intentionally contaminated multicrystalline silicon, Proc. 24th EU PVSEC Hamburg (2009).

[11] http: /tech. knime. org/community/image-processing.

[12] http: /knime. org.

[13] M. Holla, T. Arguirov, W. Seifert, M. Kittler, Analysis of silicon carbide and silicon nitride precipitates in block cast multicrystalline silicon, Solid State Phenom. 156-158 (2010) 41-48.

DOI: 10.4028/

[14] M. Seibt, M. Griess, A.A. Istratov, H. Hedemann, A. Sattler, W. Schröter, Formation and properties of copper silicide precipitates in silicon, phys. stat. sol (a) 166 (1998) 171-182.

DOI: 10.1002/(sici)1521-396x(199803)166:1<171::aid-pssa171>;2-2

[15] T. Buoanssisi, A.A. Istratov, M.D. Pickett, M.A. Marcus, T.F. Ciszek, E.R. Weber, Metal precipitation at grain boundaries in silicon: dependence on grain boundary character and dislocation decoration, Appl. Phys. Lett. 89 (2006) 042102.

DOI: 10.1063/1.2234570

[16] A. Zuschlag, S. Ohl, J. Bernhard, H. Morhenn, J. Ebser, J. Junge, S. Seren, G. Hahn, µXRF investigations of the influence of solar cell processing steps on iron and copper precipitates in multicrystalline silicon, Proc. 35th IEEE PVSC Honolulu (2010).

DOI: 10.1109/pvsc.2010.5616911

[17] D.P. Fenning, A.S. Zuschlag, M.I. Bertoni, B. Lai, G. Hahn, T. Buonassisi, Improved iron gettering of contaminated multicrystalline silicon by high-temperature phosphorus diffusion, J. Appl. Phys. 113 (2013) 214504.

DOI: 10.1063/1.4808310

Fetching data from Crossref.
This may take some time to load.