Iron Management in Multicrystalline Silicon through Predictive Simulation: Point Defects, Precipitates, and Structural Defect Interactions

Abstract:

Article Preview

In multicrystalline silicon for photovoltaic applications, high concentrations of iron are usually found, which deteriorate material performance. Due to the limited solubility of iron in silicon, only a small fraction of the total iron concentration is present as interstitial solute atoms while the vast majority is present as iron silicide precipates. The concentration of iron interstitials can be effectively reduced during phosphorus diffusion gettering (PDG), but this strongly depends on the size and density of iron precipitates, which partly dissolve during high-temperature processing. The distribution of precipitated iron varies along the height of a mc-Si ingot and is not significantly reduced during standard PDG steps. However, the removal of both iron interstitials and precipitates can be enhanced by controlling their kinetics through carefully engineered time-temperature profiles, guided by simulations.

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Edited by:

J.D. Murphy

Pages:

15-25

DOI:

10.4028/www.scientific.net/SSP.205-206.15

Citation:

J. Hofstetter, D. P. Fenning, D. M. Powell, A. E. Morishige, T. Buonassisi, "Iron Management in Multicrystalline Silicon through Predictive Simulation: Point Defects, Precipitates, and Structural Defect Interactions", Solid State Phenomena, Vols. 205-206, pp. 15-25, 2014

Online since:

October 2013

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.