Iron Management in Multicrystalline Silicon through Predictive Simulation: Point Defects, Precipitates, and Structural Defect Interactions


Article Preview

In multicrystalline silicon for photovoltaic applications, high concentrations of iron are usually found, which deteriorate material performance. Due to the limited solubility of iron in silicon, only a small fraction of the total iron concentration is present as interstitial solute atoms while the vast majority is present as iron silicide precipates. The concentration of iron interstitials can be effectively reduced during phosphorus diffusion gettering (PDG), but this strongly depends on the size and density of iron precipitates, which partly dissolve during high-temperature processing. The distribution of precipitated iron varies along the height of a mc-Si ingot and is not significantly reduced during standard PDG steps. However, the removal of both iron interstitials and precipitates can be enhanced by controlling their kinetics through carefully engineered time-temperature profiles, guided by simulations.



Solid State Phenomena (Volumes 205-206)

Edited by:

J.D. Murphy




J. Hofstetter et al., "Iron Management in Multicrystalline Silicon through Predictive Simulation: Point Defects, Precipitates, and Structural Defect Interactions", Solid State Phenomena, Vols. 205-206, pp. 15-25, 2014

Online since:

October 2013




[1] P. Mints, SPV market research, the global market for pv technologies, in: 9th Photovoltaic Science Application and Technology Conference and Exhibition, (2012).

[2] A. A. Istratov, T. Buonassisi, R. J. McDonald, A. R. Smith, R. Schindler, J. A. Rand, J. P. Kalejs, E. R. Weber, Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length, J. Appl. Phys. 94 (2003).

DOI: 10.1063/1.1618912

[3] T. Buonassisi, A. A. Istratov, M. D. Pickett, M. Heuer, J. P. Kalejs, G. Hahn, M. A. Marcus, B. Lai, Z. Cai, S. M. Heald, T. F. Ciszek, R. F. Clark, D. W. Cunningham, A. M. Cabor, R. Jonczyk, S. Narayanan, E. Sauar, E. R. Weber, Chemical natures and distributions of metal impurities in multicrystalline silicon materials, Prog. Photovoltaics res. appl. 14 (2006).

DOI: 10.1002/pip.690

[4] V. Kveder, M. Kittler, W. Schroter, Recombination activity of contaminated dislocations in silicon: a model describing electron-beam-induced current contrast behavior, Phys. Rev. B 63 (2001) 115208.

DOI: 10.1103/physrevb.63.115208

[5] J. Murphy, K. Bothe, V. Voronkov, R. Falster, On the mechanism of recombination at oxide precipitates in silicon, Appl. Phys. Lett. 102 (4) (2013) 042105.

DOI: 10.1063/1.4789858

[6] R. Kvande, B. Geerligs, G. Coletti, L. Arnberg, M. D. Sabatino, E. J. Ovrelid, C. C. Swanson, Distribution of iron in multi-crystalline silicon ingots, J. Appl. Phys. 104 (2008) 064905.

DOI: 10.1063/1.2956697

[7] E. Olsen, E. Øvrelid, Silicon nitride coating and crucible effects of using upgraded materials in the casting of multicrystalline silicon ingots, Prog. Photovoltaics res. appl. 16 (2) (2008) 93-100.

DOI: 10.1002/pip.777

[8] T. U. Nerland, L. Arnberg, A. Holt, Origin of the low carrier lifetime edge zone in multicrystalline pv silicon, Prog. Photovoltaics res. appl. 17 (2008) 289 - 296.

DOI: 10.1002/pip.876

[9] D. Macdonald, A. Cuevas, A. Kinomura, Y. Nakano, L. J. Geerligs, Transition-metal profiles in a multicrystalline silicon ingot, J. Appl. Phys. 97 (2005) 033523-1 - 033523-7.

DOI: 10.1063/1.1845584

[10] T. Buonassisi, A. A. Istratov, M. Heuer, M. A. Marcus, R. Jonczyk, J. Isenberg, B. Lai, Z. Cai, S. Heald, W. Warta, R. Schindler, G. Willeke, E. R. Weber, Synchrotron-based investigations of the nature and impact of iron contamination in multicrystalline silicon solar cells, J. Appl. Phys. 97 (2005).

DOI: 10.1063/1.1866489

[11] B. L. Sopori, L. Jastrzebski, T. Tan, A comparison of gettering in single-and multicrystalline silicon for solar cells, in: Proc. 25th IEEE PVSC, Washington, D.C., 1996, p.625.

DOI: 10.1109/pvsc.1996.564206

[12] S. Rein, S. W. Glunz, Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy, J. Appl. Phys. 98 (2005) 113711.

DOI: 10.1063/1.2106017

[13] P. Gundel, M. C. Schubert, F. D. Heinz, W. Kwapil, W. Warta, G. Martinez-Criado, M. Reiche, E. R. Weber, Impact of stress on the recombination at metal precipitates in silicon, J. Appl. Phys. 108 (10) (2010) 103707.

[14] T. Buonassisi, A. Istratov, M. Marcus, B. Lai, Z. Cai, S. Heald, E. Weber, Engineering metal-impurity nanodefects for low-cost solar cells, Nat. Mater. 4 (2005) 676-679.

DOI: 10.1038/nmat1457

[15] D. P. Fenning, J. Hofstetter, M. I. Bertoni, G. Coletti, B. Lai, C. del Canizo, T. Buonassisi, Precipitated iron: A limit on gettering efficacy in multicrystalline silicon, J. Appl. Phys. 113 (4) (2013) 044521.

DOI: 10.1063/1.4788800

[16] D. M. Powell, D. P. Fenning, J. Hofstetter, J. F. Lelievre, C. d. Canizo, T. Buonassisi, TCAD for PV - a fast method to accurately model metal impurity evolution during solar cell processing, PV International 15 (2012) 91.

[17] J. Hofstetter, J. F. Leliévre, C. del Cañizo, A. Luque, Study of internal versus external gettering of iron during slow cooling processes for silicon solar cell fabrication, Solid State Phenomena 156-158 (2010) 387-393.

DOI: 10.4028/

[18] D. P. Fenning, J. Hofstetter, M. I. Bertoni, S. Hudelson, M. Rinio, J. F. Lelièvre, B. Lai, C. del Cañizo, T. Buonassisi, Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling, Appl. Phys. Lett. 98 (2011).

DOI: 10.1063/1.3575583

[19] J. -F. Lelievre, J. Hofstetter, A. Peral, I. Hocesc, F. Recart, C. del Canizo, Dissolution and gettering of iron during contact co-firing, Energy Procedia 8 (2011) 257 - 262.

DOI: 10.1016/j.egypro.2011.06.133

[20] J. Hofstetter, D. P. Fenning, J. -F. Lelièvre, C. del Cañizo, T. Buonassisi, Engineering metal precipitate size distributions to enhance gettering in multicrystalline silicon, phys. stat. sol. (a) 209 (10) (2012) 1861- -1865.

DOI: 10.1002/pssa.201200360

[21] D. P. Fenning, A. S. Zuschlag, M. I. Bertoni, B. Lai, G. Hahn, T. Buonassisi, Improved iron gettering of contaminated multicrystalline silicon by high-temperature phosphorus diffusion, J. Appl. Phys. 113 (2013) 214504.

DOI: 10.1063/1.4808310

[22] D. H. Macdonald, L. J. Geerligs, A. Azzizi, Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping, J. Appl. Phys. 95 (3) (2004) 1021-1028.

DOI: 10.1063/1.1637136

[23] J. Hofstetter, D. P. Fenning, M. I. Bertoni, J. F. Lelièvre, C. del Cañizo, T. Buonassisi, Impurity-toefficiency simulator: Predictive simulation of silicon solar cell performance based on iron content and distribution, Prog. Photovoltaics Res. Appl. 19 (2010).

DOI: 10.1002/pip.1062

[24] J. Hofstetter, J. F. Lelièvre, D. P. Fenning, M. I. Bertoni, T. Buonassisi, C. del Cañizo, Towards the tailoring of p diffusion gettering to as-grown silicon material properties, Solid State Phenomena 178 (2011) 158-165.

DOI: 10.4028/

[25] Impurities-to-Efficiency (I2E) simulator, online applet, http: /pv-i2e. mit. edu.

[26] H. Hieslmair, S. Balasubramanian, A. A. Istratov, E. R. Weber, Gettering simulator: physical basis and algorithm, Semiconductor Science and Technology 16 (2001) 567-574.

DOI: 10.1088/0268-1242/16/7/307

[27] C. del Canizo, A. Luque, A comprehensive model for the gettering of lifetime-killing impurities in silicon, J. Electrochem. Soc. 147 (2000) 2685-2692.

[28] M. Seibt, A. Sattler, C. Rudolf, O. Voss, V. Kveder, W. Schroter, Gettering in silicon photovoltaics: current state and future perspectives, phys. stat. sol. (a) 203 (2006) 696.

DOI: 10.1002/pssa.200664516

[29] A. Bentzen, A. Holt, R. Kopecek, G. Stokkan, J. S. Christensen, B. G. Svensson, Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing, J. Appl. Phys. 99 (2006) 093509.

DOI: 10.1063/1.2194387

[30] A. Haarahiltunen, H. Vainola, O. Anttila, E. Saarnilehto, M. Yli-Koski, J. Storgards, J. Sinkkonen, Modeling of heterogeneous precipitation of iron in silicon, Appl. Phys. Lett. 87 (2005) 151908.

DOI: 10.1063/1.2099531

[31] J. Schon, H. Habenicht, M. C. Schubert, W. Warta, Understanding the distribution of iron in multicrystalline silicon after emitter formation: Theoretical model and experiments, J. Appl. Phys. 109 (6) (2011) 063717.

DOI: 10.1063/1.3553858

[32] R. Chen, H. Wagner, A. Dastgheib-Shirazi, M. Kessler, Z. Zhu, V. Shutthanandan, P. P. Altermatt, S. T. Dunham, A model for phosphosilicate glass deposition via pocl 3 for control of phosphorus dose in si, J. Appl. Phys. 112 (12) (2012) 124912.

DOI: 10.1063/1.4771672

[33] J. D. Murphy, R. J. Falster, http: /dx. doi. org/10. 1002/pssr. 201105388Contamination of silicon by iron at temperatures below 8000c, phys. stat. sol. RRL 5 (10-11) (2011).

[34] J. D. Murphy, R. J. Falster, The relaxation behaviour of supersaturated iron in single-crystal silicon at 500 to 7500 c, J. Appl. Phys. 112 (11) (2012) 113506.

DOI: 10.1063/1.4767378

[35] G. Coletti, R. Kvande, V. D. Mihailetchi, L. J. Geerligs, L. Arnberg, E. J. Ovrelid, Effect of iron in silicon feedstock on p- and n-type multicrystalline silicon solar cells, J. Appl. Phys. 104 (2008) 104913.

DOI: 10.1063/1.3021355

[36] J. Harkonen, V. -P. Lempinen, T. Juvonen, J. Kylmaluoma, Recovery of minority carrier lifetime in lowcost multicrystalline silicon, Sol. Energ. Mat. Sol. Cells 73 (2003) 125-130.

DOI: 10.1016/s0927-0248(01)00117-9

[37] P. Manshanden, L. Geerligs, Improved phosphorous gettering of multicrystalline silicon, Sol. Energy Mater. Sol. Cells 90 (2006) 998-1012.

DOI: 10.1016/j.solmat.2005.05.015

[38] J. Tan, A. Cuevas, D. Macdonald, N. Bennett, I. Romijn, T. Trupke, R. Bardos, Optimised gettering and hydrogenation of multi-crystalline silicon wafers for use in solar cells, in: Proc. 22nd EUPVSEC, Milan, Italy, 2007, pp.1309-1313.

[39] M. D. Pickett, T. Buonassisi, Iron point defect reduction in multicrystalline silicon solar cells, Appl. Phys. Lett. 92 (2008) 122103.

[40] M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y. P. B. Mouafi, D. Borchert, A. Montesdeoca-Santana, Improvement of multicrystalline silicon solar cells by a low temperature anneal after emitter diffusion, Prog. Photovoltaics Res. Appl. 19 (2010).

DOI: 10.1002/pip.1002

[41] J. Hofstetter, D. P. Fenning, T. Buonassisi, Toward customizing the solar cell process to as-grown silicon material properties, unpublished.

[42] P. Plekhanov, R. Gafiteanu, U. Gösele, T. Tan, Modeling of gettering of precipitated impurities from si for carrier lifetime improvement in solar cell applications, J. Appl. Phys. 86 (1999) 2453-2458.

DOI: 10.1063/1.371075

[43] D. P. Fenning, High temperature defect engineering for silicon solar cells: Predictive process simulation and synchrotron-based microcharacterization, Ph.D. thesis, Massachusetts Institute of Technology (2013).

[44] I. E. Reis, S. Riepe, W. Koch, J. Bauer, S. Beljakowa, O. Breitenstein, H. Habenicht, D. Kresner-Kiel, G. Pensl, J. Schon, W. Seifert, Effect of impurities on solar cell parameters in intentionally contaminated multicrystalline silicon, in: proc. 24th EUPVSEC, Hamburg, Germany, 2009, pp.2144-2148.

[45] B. Michl, J. Schon, W. Warta, M. C. Schubert, The impact of different diffusion temperature profiles on iron concentrations and carrier lifetimes in multicrystalline silicon wafers, IEEE J. Photovoltaics 3 (2012) 635 - 640.

DOI: 10.1109/jphotov.2012.2231726

[46] D. Macdonald, S. Phang, F. Rougieux, S. Lim, D. Paterson, D. Howard, M. D. de Jonge, C. Ryan, Ironrich particles in heavily contaminated multicrystalline silicon wafers and their response to phosphorus gettering, Semiconductor Science and Technology 27 (12) (2012).

DOI: 10.1088/0268-1242/27/12/125016

[47] A. E. Morishige, D. P. Fenning, J. Hofstetter, D. M. Powell, T. Buonassisi, Enhanced phosphorus diffusion gettering by temperature optimization, in: 38th IEEE PVSC, Austin, TX, (2012).

DOI: 10.1109/pvsc.2012.6318036

[48] A. E. Morishige, Master's thesis (unpublished).

[49] C. Donolato, Modeling the effect of dislocations on the minority carrier diffusion length of a semiconductor, J. Appl. Phys. 84 (5) (1998) 2656-2664.

DOI: 10.1063/1.368378

[50] G. Stokkan, S. Riepe, O. Lohne, W. Warta, Spatially resolved modeling of the combined effect of dislocations and grain boundaries on minority carrier lifetime in multicrystalline silicon, J. Appl. Phys. 101 (5) (2007) 053515.

[51] M. Rinio, S. Peters, M. Werner, A. Lawerenz, H. Muller, Measurement of the normalized recombination strength of dislocations in multicrystalline silicon solar cells, in: Solid State Phenomena 82 - 84, 2002, pp.701-706.

[52] M. I. Bertoni, D. P. Fenning, M. Rinio, V. Rose, M. Holt, J. Maser, T. Buonassisi, Nanoprobe X-ray fluorescence characterization of defects in large-area solar cells, Energy & Environmental Science 4 (10) (2011) 4252-4257.

DOI: 10.1039/c1ee02083h

[53] J. Hofstetter, D. P. Fenning, D. B. Needleman, D. M. Powell, A. E. Morishige, S. Castellanos, T. Buonassisi, Correlation of the interstitial iron concentration and the recombination strength of dislocations in multicrystalline silicon, in: visual presentation at SiliconPV 2013, Hameln, Germany, (2013).

[54] C. Reimann, G. Müller, J. Friedrich, K. Lauer, A. Simonis, H. Wätzig, S. Krehan, R. Hartmann, A. Kruse, Systematic characterization of multi-crystalline silicon string ribbon wafer, Journal of Crystal Growth 361 (2012) 38 - 43.

DOI: 10.1016/j.jcrysgro.2012.08.022

[55] D. P. Fenning, A. S. Zuschlag, A. Frey, J. Hofstetter, M. I. Bertoni, G. Hahn, T. Buonassisi, Investigation of lifetime-limiting defects after high-temperature phosphorus diffusion in silicon solar cell materials, IEEE J. Photovoltaics (2013).

[56] M. Seibt, R. Khalil, V. Kveder, W. Schroter, Electronic states at dislocations and metal silicide precipitates in crystalline silicon and their role in solar cell materials, Appl. Phys. A 96 (2009) 235-253.

[57] H. J. Choi, M. I. Bertoni, J. Hofstetter, D. P. Fenning, D. M. Powell, S. Castellanos, T. Buonassisi, Dislocation density reduction during impurity gettering in multicrystalline silicon, IEEE J. Photovoltaics 3 (2012) 189 - 198.

Fetching data from Crossref.
This may take some time to load.