Electrical and Optical Characterisation of Silicon Nanocrystals Embedded in SiC


Article Preview

Silicon nanocrystals (Si NCs) are a promising candidate for the top cell of an all-Si tandem solar cell with a band gap from 1.3-1.7 eV, tuneable by adjusting NC size. They are readily produced within a Si-based dielectric matrix by precipitation from the Si excess in multilayers of alternating stoichiometric and silicon-rich layers. Here we examined the luminescence and transport of Si NCs embedded in SiC. We observed luminescence that redshifts from 2.0 to 1.5 eV with increasing nominal NC size. Upon further investigation, we found that this redshift is to a large extent due to Fabry-Pérot interference. Correction for this effect allows an analysis of the spectrum emitted from within the sample. We also produced p-i-n solar cells and found that the observed I-V curves under illumination could be well-fitted by typical thin-film solar cell models including finite series and parallel resistances, and a voltage-dependent current collection function. A minority carrier mobility-lifetime product on the order of 10-10 cm2/V was deduced, and a maximum open-circuit voltage of 370 mV achieved.



Solid State Phenomena (Volumes 205-206)

Edited by:

J.D. Murphy




M. Schnabel et al., "Electrical and Optical Characterisation of Silicon Nanocrystals Embedded in SiC", Solid State Phenomena, Vols. 205-206, pp. 480-485, 2014

Online since:

October 2013




[1] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach, Applied Physics Letters, 80 (2002) 661-663.

DOI: https://doi.org/10.1063/1.1433906

[2] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, 57 (1990) 1046-1048.

DOI: https://doi.org/10.1063/1.103561

[3] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, Optical gain in silicon nanocrystals, Nature, 408 (2000) 440-444.

DOI: https://doi.org/10.1038/35044012

[4] P. Löper, D. Stüwe, M. Künle, M. Bivour, C. Reichel, R. Neubauer, M. Schnabel, M. Hermle, O. Eibl, S. Janz, M. Zacharias, S.W. Glunz, A membrane device for substrate-free photovoltaic characterization of quantum dot based p-i-n solar cells, Advanced Materials, 24 (2012).

DOI: https://doi.org/10.1002/adma.201200539

[5] M. Canino, C. Summonte, M. Allegrezza, R. Shukla, I.P. Jain, M. Bellettato, A. Desalvo, F. Mancarella, M. Sanmartin, A. Terrasi, P. Löper, M. Schnabel, S. Janz, Identification and tackling of a parasitic surface compound in SiC and Si-rich carbide films, Materials Science and Engineering: B.

DOI: https://doi.org/10.1016/j.mseb.2013.01.011

[6] M. Schnabel, P. Löper, S. Gutsch, P.R. Wilshaw, S. Janz, Thermal oxidation and encapsulation of silicon–carbon nanolayers, Thin Solid Films, 527 (2013) 193-199.

DOI: https://doi.org/10.1016/j.tsf.2012.12.005

[7] P. Löper, M. Canino, D. Qazzazie, M. Schnabel, M. Allegrezza, C. Summonte, S.W. Glunz, S. Janz, M. Zacharias, Silicon nanocrystals embedded in silicon carbide: Investigation of charge carrier transport and recombination, Applied Physics Letters, 102 (2013).

DOI: https://doi.org/10.1063/1.4795238

[8] S. Dyakov, T. Perova, C. Miao, Y.H. Xie, S. Cherevkov, A. Baranov, Influence of the buffer layer properties on the intensity of Raman scattering of graphene, Journal of Raman Spectroscopy, (2013).

DOI: https://doi.org/10.1002/jrs.4294

[9] S. Dyakov, D. Zhigunov, A. Hartel, M. Zacharias, T. Perova, V.Y. Timoshenko, Enhancement of photoluminescence signal from ultrathin layers with silicon nanocrystals, Applied Physics Letters, 100 (2012) 061908-061908-061904.

DOI: https://doi.org/10.1063/1.3682537

[10] K.A. Neyts, Simulation of light emission from thin-film microcavities, JOSA A, 15 (1998) 962-971.

[11] P. Löper, M. Canino, J. López-Vidrier, M. Schnabel, F. Schindler, F. Heinz, A. Witzky, M. Bellettato, M. Allegrezza, D. Hiller, A. Hartel, S. Gutsch, S. Hernández, R. Guerra, S. Ossicini, B. Garrido, S. Janz, M. Zacharias, Silicon nanocrystals from high-temperature annealing: Characterization on device level, physica status solidi (a), 210 (2013).

DOI: https://doi.org/10.1002/pssa.201200824

[12] R.S. Crandall, Modeling of thin film solar cells: Uniform field approximation, Journal of Applied Physics, 54 (1983) 7176-7186.

DOI: https://doi.org/10.1063/1.331955

[13] J.H. Werner, Schottky barrier and pn-junction I/V plots - small signal evaluation, Appl Phys A, 47 (1988) 291-300.

[14] J. Merten, J.M. Asensi, C. Voz, A.V. Shah, R. Platz, J. Andreu, Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules, Electron Devices, IEEE Transactions on, 45 (1998) 423-429.

DOI: https://doi.org/10.1109/16.658676