Electronic States and Optical Gap of Phosphorus-Doped Silicon Nanocrystals Embedded in a Silica Host Matrix


Article Preview

Using the envelope-function approximation the electronic states and the optical gap of silicon nanocrystals heavily doped with phosphorus have been calculated. Assuming the uniform impurity distribution over the crystallite volume we have found the fine structure of the electron ground state (induced by the valley-orbit interaction) and the optical gap as a function of the crystallite size and donor concentration. It is shown that the energy of the ground singlet state decreases almost linearly as the concentration increases, while the valley-orbit splitting increases nonlinearly. Phosphorus doping also results in the decrease of the nanocrystal gap with increasing the impurity concentration.



Solid State Phenomena (Volumes 205-206)

Edited by:

J.D. Murphy




A. A. Konakov et al., "Electronic States and Optical Gap of Phosphorus-Doped Silicon Nanocrystals Embedded in a Silica Host Matrix", Solid State Phenomena, Vols. 205-206, pp. 486-491, 2014

Online since:

October 2013




[1] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett. 56 (1990) 2379-2380.

DOI: https://doi.org/10.1063/1.102921

[2] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57 (1990) 1046-1048.

DOI: https://doi.org/10.1063/1.103561

[3] V.A. Belyakov, V.A. Burdov, R. Lockwood, A. Meldrum, Silicon nanocrystals: Fundamental theory and implications for stimulated emission, Adv. Opt. Technol. 2008 (2008) 279502 (32 pp).

DOI: https://doi.org/10.1155/2008/279502

[4] S.K. Ray, S. Maikap, W. Banerjee, S. Das, Nanocrystals for silicon-based light-emitting and memory devices, J. Phys. D: Appl. Phys. 46 (2013) 153001 (31 pp).

DOI: https://doi.org/10.1088/0022-3727/46/15/153001

[5] D.I. Tetelbaum, I.A. Karpovich, M.V. Stepikhova, V.G. Shengurov, K.A. Markov, O.N. Gorshkov, Characteristics of photoluminescence in SiO2 with Si nanoinclusions produced by ion implantation, Surface Investigation X-Ray, Synchrotron and Neutron Techniques 14 (1998).

[6] M. Fujii, A. Mimura, S. Hayashi, K. Yamamoto, Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: Improvement of photoluminescence efficiency, Appl. Phys. Lett. 75 (1999) 184-186.

DOI: https://doi.org/10.1063/1.124313

[7] M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, S. Hayashi, Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities, Appl. Phys. Lett. 85 (2004) 1158-1160.

DOI: https://doi.org/10.1063/1.1779955

[8] A.N. Mikhaylov, D.I. Tetelbaum, V.A. Burdov, O.N. Gorshkov, A.I. Belov, D.A. Kambarov, V.A. Belyakov, V.K. Vasiliev, A.I. Kovalev, D.M. Gaponova, Effect of ion doping with donor and acceptor impurities on intensity and lifetime of photoluminescence from SiO2 films with silicon quantum dots, J. Nanosci. Nanotechnol. 8 (2008).

DOI: https://doi.org/10.1166/jnn.2008.a067

[9] V.A. Belyakov, V.A. Burdov, Γ-X mixing in phosphorus-doped silicon nanocrystals: Improvement of photon generation efficiency, Phys. Rev. B 79 (2009) 035302 (9 pp).

DOI: https://doi.org/10.1103/physrevb.79.035302

[10] V.A. Belyakov, A.I. Belov, A.N. Mikhaylov, D.I. Tetelbaum, V.A. Burdov, Improvement of the photon generation efficiency in phosphorus-doped silicon nanocrystals: Γ–X mixing of the confined electron states, J. Phys.: Condens. Matter 21 (2009).

DOI: https://doi.org/10.1088/0953-8984/21/4/045803

[11] M. Fujii, A. Mimura, S. Hayashi, Y. Yamamoto, K. Murakami, Hyperfine structure of the electron spin resonance of phosphorus-doped Si nanocrystals, Phys. Rev. Lett. 89 (2002) 206805 (4 pp).

DOI: https://doi.org/10.1103/physrevlett.89.206805

[12] M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi, S. Hayashi, Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals, J. Appl. Phys. 94 (2003) 1990-(1995).

DOI: https://doi.org/10.1063/1.1590409

[13] T. Nakamura, S. Adachi, M. Fujii, K. Miura, S. Yamamoto, Phosphorus and boron codoping of silicon nanocrystals by ion implantation: Photoluminescence properties, Phys. Rev. B 85 (2012) 045441 (7 pp).

DOI: https://doi.org/10.1103/physrevb.85.045441

[14] S. Gutsch, A.M. Hartel, D. Hiller, N. Zakharov, P. Werner, M. Zacharias, Doping efficiency of phosphorus doped silicon nanocrystals embedded in a SiO2 matrix, Appl. Phys. Lett. 100 (2012) 233115 (4 pp).

DOI: https://doi.org/10.1063/1.4727891

[15] I.F. Crowe, N. Papachristodoulou, M.P. Halsall, N.P. Hylton, O. Hulko, A.P. Knights, P. Yang, R.M. Gwilliam, M. Shah, A.J. Kenyon, Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation, J. Appl. Phys. 113 (2013).

DOI: https://doi.org/10.1063/1.4772947

[16] Z. Zhou, M.L. Steigerwald, R.A. Friesner, L. Brus, M.S. Hybertsen, Structural and chemical trends in doped silicon nanocrystals: First-principles calculations, Phys. Rev. B 71 (2005) 245308 (8 pp).

DOI: https://doi.org/10.1103/physrevb.71.245308

[17] S. Ossicini, E. Degoli, F. Iori, E. Luppi, R. Magri, G. Cantele, F. Trani, D. Ninno, Simultaneously B- and P-doped silicon nanoclusters: Formation energies and electronic properties, Appl. Phys. Lett. 87 (2005) 173120 (3 pp).

DOI: https://doi.org/10.1063/1.2119424

[18] J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B 18 (2000) 1785-1791.

DOI: https://doi.org/10.1116/1.591472

[19] J.D. Casperson, L.D. Bell, H.A. Atwater, Materials issues for layered tunnel barrier structures, J. Appl. Phys. 92 (2002) 261-267.

DOI: https://doi.org/10.1063/1.1479747

[20] G.D. Wilk, R.M. Wallace, J.M. Anthony, High-k gate dielectrics: current status and materials properties considerations, J. Appl. Phys. 89 (2001) 5243-5275.

DOI: https://doi.org/10.1063/1.1361065

[21] K. Seino, F. Bechstedt, P. Kroll, Band alignment at a nonplanar Si/SiO2 interface, Phys. Rev. B 82 (2010) 085320 (7 pp).

[22] F. Iori, E. Degoli, R. Magri, I. Marri, G. Cantele, D. Ninno, F. Trani, O. Pulci, S. Ossicini, Engineering silicon nanocrystals: Theoretical study of the effect of codoping with boron and phosphorus, Phys. Rev. B 76 (2007) 085302 (14 pp).

DOI: https://doi.org/10.1103/physrevb.76.085302

[23] R. Duffy, T. Dao, Y. Tamminga, K. van der Tak, F. Roozeboom, E. Augendre, Groups III and V impurity solubilities in silicon due to laser, flash, and solid-phase-epitaxial-regrowth anneals, Appl. Phys. Lett. B 89 (2006) 071915 (3 pp).

DOI: https://doi.org/10.1063/1.2337081

[24] A.A. Konakov, V.A. Burdov, Optical gap of silicon crystallites embedded in various wide-band amorphous matrices: role of environment, J. Phys.: Condens. Matter 22 (2010) 215301 (7 pp).

DOI: https://doi.org/10.1088/0953-8984/22/21/215301

[25] V.A. Burdov, Dependence of the optical gap of Si quantum dots on the dot size, Semiconductors 36 (2002) 1154-1158.

DOI: https://doi.org/10.1134/1.1513861

[26] W. Kohn, J.M. Luttinger, Theory of donor states in silicon, Phys. Rev. 98 (1955) 915-922.

DOI: https://doi.org/10.1103/physrev.98.915

[27] V.A. Belyakov, V.A. Burdov, Valley-orbit splitting in doped nanocrystalline silicon: k∙p calculations, Phys. Rev. B 76 (2007) 045335 (12 pp).

DOI: https://doi.org/10.1103/physrevb.76.045335

[28] V.A. Belyakov, V.A. Burdov, Anomalous splitting of the hole states in silicon quantum dots with shallow acceptors, J. Phys.: Condens. Matter 20 (2008) 025213 (13 pp).

DOI: https://doi.org/10.1088/0953-8984/20/02/025213

[29] P.P. Altermatt, A. Schenk, G. Heiser, A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si: P, J. Appl. Phys. 100 (2006) 113714 (10 pp).

DOI: https://doi.org/10.1063/1.2386934