Design of a Synchro-Drive Omnidirectional Mini-Robot

Abstract:

Article Preview

Using the synchro-drive principle, the paper presents a new omnidirectional mini-robot with conventional wheels. The synchro-drive principle is achieved applying geared mechanisms: three for steering and another three for displacement. The mini-robot uses two DC motors and three pairs of conventional wheels. The first DC motor controls the rotation of three pairs of the wheels around the horizontal axis thus generating the driving force (traction) to the mini-robot. The second motor controls the rotation of three pairs of the wheels around the vertical axis hence generating their orientation.

Info:

Periodical:

Solid State Phenomena (Volumes 220-221)

Edited by:

Algirdas V. Valiulis, Olegas Černašėjus and Vadim Mokšin

Pages:

161-167

Citation:

M. O. Tătar et al., "Design of a Synchro-Drive Omnidirectional Mini-Robot", Solid State Phenomena, Vols. 220-221, pp. 161-167, 2015

Online since:

January 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] P.J. Mc Kerrow, Introduction to Robotics, Adison – Wessley Co, (1991).

[2] R. Siegwart, I. Nourbackhsh, Introduction to Autonomous Mobile Robots, The MIT Press, Massachsetts, (2004).

[3] G. Campion, W. Chung, Wheeled Robots, in: B. Sicilino, O. Khatib (Eds. ), Springer Handbook of Robotics, Chapter 17, Springer, (2008).

[4] A.G. Dudek, M. Jenkin, Computational Principles of Mobile Robotics, Cambridge University Press, (2000).

[5] K. Goris, Autonomus Mobile Robot Mechanical Design, 2005, Information on http: /vandeperrethesis. googlecode. com/svn-history/r82/trunk/thesis_documentatie/thesis_mobiele_robots. pdf.

[6] V.J. González-Villela, S. Shair, R.M. Parkin, M.R. Jackson, M. López-Parra, A. Ramírez-Reivich, Tracking linear trajectories with the spider®: a synchro-drive grass mower mobile robot, Ingeniería Mecánica Tecnología y Desarrollo 5(2007) 145–150.

[7] D.E. Fisher, J.M. Holland, K.F. Kennedy, US Patent 5, 609, 216, (1997).

[8] U-J. Jung, G.H. Choi, B.S. Kim, U.S. Patent 7, 634, 327 B2, (2009).

[9] M.O. Tătar, C. Cirebea, D. Mândru, B. Chetran, Synchronous Drive Omnidirectional Minirobot, Trans Tech Publications, Switzerland, (2012).

DOI: https://doi.org/10.4028/www.scientific.net/amm.162.294

[10] D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance, IEEE Robotics & Automation Magazine 4 (1997) 23–33.

DOI: https://doi.org/10.1109/100.580977

[11] N. Doh, H. Choset, W.K. Chung, Accurate relative localization using odometry, in: Proceedings of the 2003 IEEE International Conference on Robotics & Automation, Taipei, Taiwan, 2003, p.1606–1612.

DOI: https://doi.org/10.1109/robot.2003.1241824

[12] M. Zaman, J. Illingworth, Odometry error model for a synchronous drive robot, in: Proceedings of the International Conference on Robotics, Vision, Information and Signal Processing ROVISP2007, Penang, Malaysia, 2007, p.839–844.

[13] O.S. Kwon, Development of synchro-drive mobile robot base with endless rotate type turret, J. of the Korean Society of Precision Engineering 22 (2005) 123–129.

[14] M.O. Tătar, D. Mândru, Wheeled minirobots, in: Proceedings of the X International Conference on the Theory of Machines and Mechanisms, Liberec, 2008, p.623–628.

[15] M.O. Tătar, D. Mândru, Design of the mobile minirobots structures, in: Proceedings of IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR 2008), Cluj-Napoca, 2008, p.337–340.

DOI: https://doi.org/10.1109/aqtr.2008.4588850

[16] M.O. Tătar, A. Aluţei, D. Mândru, Mobile minirobots structures, in Visa Ion (Ed. ), SYROM'09, Springer, 2009, p.185–192.

DOI: https://doi.org/10.1007/978-90-481-3522-6_14

[17] Information on http: /www. digilentinc. com.