The Influence of the Interstand Tension of the Band on Roll Wear during the Continuous Groove-Rolling Process

Abstract:

Article Preview

Numerical modelling of the round bar rolling process, while considering the wear of passes depending on their shape, was carried out within the present work. The analysis of the rolling process was conducted thus analysing the influence of interstand tension on roll wear. For the theoretical study of the rolling process, Forge2011® was employed, which is finite element method-relying software that enables the thermo-mechanical simulation of rolling processes in a triaxial state of strain. The wear model implemented in Forge2011® permits no quantitative evaluation, but only a comparative analysis of the wear of rolls. In order to use the results of simulation employing the simplified Archard model for the quantitative evaluation of roll wear, it is necessary to define the factor of wear and the hardness of the tool as a function of temperature.

Info:

Periodical:

Solid State Phenomena (Volumes 220-221)

Edited by:

Algirdas V. Valiulis, Olegas Černašėjus and Vadim Mokšin

Pages:

898-904

Citation:

P. Szota et al., "The Influence of the Interstand Tension of the Band on Roll Wear during the Continuous Groove-Rolling Process", Solid State Phenomena, Vols. 220-221, pp. 898-904, 2015

Online since:

January 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] P. Szota, Modelowanie plastycznego zginania pasma pomiędzy klatkami podczas ciągłego walcowania prętów, in: Metalurgia 2006, Konferencja Sprawozdawcza Komitetu Metalurgii PAN, Krynica-Czarny Potok, October 11–14, 2006, p.607–612.

[2] P. Szota, E. Łabuda, Wpływ pętlowania pasma na dokładność wymiarową prętów w procesie ciągłego walcowania, in: VII Międzynarodowa Konferencja Naukowa Nowe Technologie i Osiągnięcia w Metalurgii i Inżynierii Materiałowej, Częstochowa June 2, 2006, p.542.

[3] Szota P., Mróz S., Stefanik A., Dyja H.: Numerical modelling of the working rolls wear during rods rolling process, Archives of Metallurgy and Materials, Vol. 56, (2/2011), pp.495-501.

DOI: https://doi.org/10.2478/v10172-011-0053-5

[4] S. Mróz, P. Szota, H. Dyja, Analysis of slitting passes wear for rolling ribbed bars with a longitudinal band separation, Metal Forming 2012, Steel Research International.

[5] V. Danchenko, H. Dyja, L. Lesik, L. Mashkin, A. Milenin, Technologia i modelowanie procesów walcowania w wykrojach, Politechnika Częstochowska, Metalurgia No. 28, Częstochowa, (2002).

[6] P. Szota, S. Mróz, H. Dyja, A. Kawałek, 3D FEM modelling and experimental verification of the rolls wear during the bar rolling process, Materials Science Forum 706–709 (2012) 1533–1538.

DOI: https://doi.org/10.4028/www.scientific.net/msf.706-709.1533

[7] N.J. Hoff, Approximate Analysis of Structures in the Presence of Moderately Large Steps Deformation, Quart., Appl. Mech. 2 (1954) 49.

[8] Ł. Madej, S. Węglarczyk, M. Pietrzyk, Analiza wpływu parametrów cyklu produkcyjnego elementów złącznych na zużycie narzędzi, Hutnik – Wiadomości Hutnicze 8 (2009) 620–622.

[9] FORGE3® Reference Guide Release 6. 2, Sophia-Antipolis, November, (2002).

[10] A. Hansel, T. Spittel, Kraft- und Arbeitsbedarf Bildsomer Formgeburgs Verfahren, VEB Deutscher Verlang fur Grundstoffindustrie, Lipsk, (1979).

[11] F.H. Norton, Creep of Steel at High Temperature, McGraw Hill, New York, (1929).

[12] J.F. Archard, Contact and rubbing of flat surfaces, Journal of Applied Physics 24(8) (1953) 981–988.

[13] K. Ersoy-Nurnber, G. Nurnberg, M. Golle, H. Hoffmann, Simulation of wear on sheet metal forming tools – An energy approach, Wear, Elsevier, 265 (2008) 1801–1807.

DOI: https://doi.org/10.1016/j.wear.2008.04.039

[14] L. Bourithisa, G.D. Papadimitrioua, J. Sideris, Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness, Tribology International, Elsevier, 39 (2006) 479–489.

DOI: https://doi.org/10.1016/j.triboint.2005.03.005

[15] S.M. Byon, S.I. Kim, Y. Lee, A semi analytical model for predicting the wear contour in rod rolling process, J. Mat. Proc. Technology 191 (2007) 306–309.

DOI: https://doi.org/10.1016/j.jmatprotec.2007.03.053