Analysis of Size Effect in High-Cycle Fatigue for EN AW-6063

Abstract:

Article Preview

Any changes in specimen size in relation to the reference dimensions involve scaling inaccuracies resulting in the variances in strength testing (monotonic, fatigue) results. It is referred to as a size effect. The size effect is described using a cross-sectional coefficient determined for various specimen sizes and test types. The analysed material is aluminium alloy EN AW-6063 T6 with a cross-sectional area of 28, 7 and 3.5 mm2.

Info:

Periodical:

Solid State Phenomena (Volume 224)

Edited by:

Dariusz Skibicki

Pages:

75-80

DOI:

10.4028/www.scientific.net/SSP.224.75

Citation:

T. Tomaszewski and J. Sempruch, "Analysis of Size Effect in High-Cycle Fatigue for EN AW-6063", Solid State Phenomena, Vol. 224, pp. 75-80, 2015

Online since:

November 2014

Export:

Price:

$35.00

* - Corresponding Author

[1] Z.P. Bažant, Size effect in blunt fracture concrete, rock, metal, Journal of Engineering Mechanics ASCE 110 (1984) 518-535.

DOI: 10.1061/(asce)0733-9399(1984)110:4(518)

[2] D. Boroński, R. Sołtysiak, T. Giesko, T. Marciniak. Z. Lutowski, S. Bujnowski, The investigations of fatigue cracking of laser welded joint with the use of FatigueVIEW, system, Key Engineering Materials 598 (2014) 26-31.

DOI: 10.4028/www.scientific.net/kem.598.26

[3] A. Carpinteri, A. Spagnoli, Size effect in S-N curves: A fractal approach to finite-life fatigue strength, International Journal of Fatigue 31 (2009) 927-933.

DOI: 10.1016/j.ijfatigue.2008.10.001

[4] M. Kaffenberger, M. Vormwald, Considering size effects in the notch stress concept for fatigue assessment of welded joints, Computational Materials Science 64 (2012) 71-78.

DOI: 10.1016/j.commatsci.2012.02.047

[5] K.H. Kloos, A. Buch, D. Zankov, Pure geometrical size effect in fatigue tests with constant stress amplitude and in programme tests, Materialwissenschaft und Werkstofftechnik 12 (1981) 40-50.

DOI: 10.1002/mawe.19810120205

[6] R. Kuguel, A relation between the theoretical stress concentration factor and the fatigue notch factor deduced from the concept of highly stressed volume, Proc. ASTM 61 (1961) 732-748.

[7] M. Makkonen, Notch size effects in the fatigue limit of steel, International Journal of Fatigue 25 (2003) 17-26.

DOI: 10.1016/s0142-1123(02)00053-1

[8] F.R. Mashiri, X.L. Zhao, M.A. Hirt, A. Nussbaumer, Size effect of welded thin-walled tubular joints, International Journal of Structural Stability and Dynamics 7 (2007) 101-127.

DOI: 10.1142/s0219455407002228

[9] PN-74/H-04327 Badanie metali na zmęczenie. Próba osiowego rozciągania – ściskania przy stałym cyklu obciążeń zewnętrznych.

[10] PN-EN ISO 6892-1: 2010 Metale - Próba rozciągania - Część 1: Metoda badania w temperaturze pokojowej.

[11] L.A. Sosnovski, Statistical model of a deformable solid with a critical volume and some of its applications, Strength of Materials 22 (1990) 626-632.

[12] P. Strzelecki, J. Sempruch, Experimental verification of the analytical method for estimated S-N curve in limited fatigue life, Materials Science Forum 726 (2012) 11-16.

DOI: 10.4028/www.scientific.net/msf.726.11

[13] T. Tomaszewski, J. Sempruch, Determination of the fatigue properties of aluminum alloy using mini specimen, Materials Science Forum 726 (2012) 63-68.

DOI: 10.4028/www.scientific.net/msf.726.63

[14] T. Tomaszewski, J. Sempruch, Practical implementation of selected mean stress models for results of fatigue tests realized for mini specimen, Engineering Mechanics (2014) 664-667.

[15] T. Tomaszewski, J. Sempruch, Verification of the fatigue test method applied with the use of mini specimen, Key Engineering Materials 598 (2014) 243-248.

DOI: 10.4028/www.scientific.net/kem.598.243

[16] T. Tomaszewski, J. Sempruch. T. Piątkowski, Verification of selected models of size effect based on high-cycle fatigue testing on mini specimens made of EN AW-6063 aluminum alloy, Journal of Theoretical and Applied Mechanics 52(4) (2014).

DOI: 10.15632/jtam-pl.52.4.883

[17] F. Vollertsen, Categories of size effects, Production Engineering. Research and Development 2 (2008) 377-383.

[18] W. Weibull, A statistical distribution function of wide applicability, Journal of Applied Mechanics ASME 18 (1951) 292-297.

In order to see related information, you need to Login.