Research on the Dependence between the Fatigue Life of X20CrMoV12.1 and P91 Steels under the Conditions of the Interactions of Thermo-Mechanical and Isothermal Low-Cycle Fatigue


Article Preview

The paper presents the correlation between fatigue life determined under the conditions of low-cycle fatigue (LCF) and thermo-mechanical fatigue (TMF). Fatigue life values computed using own parameter P and results obtained based on the author’s own research and literature from the publications have been shown. The tests LCF and TMF have been performed for steels used for devices operated in the power engineering industry under the conditions of variable mechanical and thermal interactions X20CrMoV12.1 and P91.



Solid State Phenomena (Volume 224)

Edited by:

Dariusz Skibicki




A. Marek et al., "Research on the Dependence between the Fatigue Life of X20CrMoV12.1 and P91 Steels under the Conditions of the Interactions of Thermo-Mechanical and Isothermal Low-Cycle Fatigue", Solid State Phenomena, Vol. 224, pp. 93-98, 2015

Online since:

November 2014




* - Corresponding Author

[1] M. Lomozik, M. Zeman, J. Brozda, Modern martensitic steels for power industry, Archives of civil and mechanical engineering, 12, 1 (2012) 49-59.


[2] S. Mrozinski, G. Golanski, Influence of temperature change on fatigue properties of P91 steel, Materials Research Innovations, 18, 2 (2014) 504-508.


[3] J. Czmochowski, A. Gorski, M. Paduchowicz, E. Rusinski, Diagnostic method of measuring hanger rods tension forces in the suspension of the power boilers combustion chamber, Journal of Vibroengineering, 14, 1 (2012) 129-134.

[4] K. Mutwil, M. Ciesla, Study on Cracking Process of Power Boiler Element. Book Series: IOP Conference Series-Materials Science and Engineering, 35 (2012).


[5] T. P. Farragher, S. Scully, N. P. O'Dowd, et al., Development of life assessment procedures for power plant headers operated under flexible loading scenarios, Int. J. Fatigue, 49 (2013) 50-61.


[6] H. Sehitoglu, Thermal and Thermo-mechanical Fatigue of Structural Alloys, Fatigue and Fracture, 19 (2008) 527–556.

[7] A. Nageshaa, R Kannana, G.V.S. Sastryb., R. Sandhyaa Singhb Vakil, K. Bhanu Sankara Raoc, M.D. Mathewa, Isothermal and thermomechanical fatigue studies on a modified 9Cr–1Mo ferritic martensitic steel, Materials Science and Engineering, A 554 (2012).


[8] J. Okrajni, Ciesla M, L. Swadzba, High-temperature low-cycle fatigue and creep behaviour of nickel-based superalloys with heat-resistant coatings, Fatigue & Fracture of Engineering Materials & Structures, 21, 8 (1998) 947-954.


[9] M. Naeem, R. Singh, D. Probert, Implications of engine deterioration for a high-pressure turbine-blade's low-cycle fatigue (LCF) life-consumption, International Journal of Fatigue, 21, 8 (1999) 831-847.


[10] W. Nowak, Materiałowe i techniczne uwarunkowania trwałości komór przegrzewaczy pary kotła BB – 1150, Biblioteka Główna Politechniki Śląskiej, Gliwice, 2003, praca doktorska (Material and Technical Determinants of the Durability of Steam Superheater Chambers of Boiler BB - 1150, Ph.D. Thesis, in Polish).

[11] A. Marek, J. Okrajni, Local stress-strain behavior of a high-temperature steam valve under transient mechanical and thermal loading, Journal of Materials Engineering and Performance, 23, 1 (2014) 31-38.


[12] J. Okrajni, G. Junak, A. Marek, Modelling of the deformation process under thermo-mechanical fatigue conditions, Int. J. Fatigue, 30, 2 (2008) 324-329.


[13] P. Hähner et al., Research and Development into a European Code-of- Practice for Strain-Controlled Thermo-mechanical Fatigue Test, Int. J. Fatigue 30 (2008) 372–381.

[14] W.J. Ostergren, J. Test. Eval., 4 (1976) 327.

[15] D. Rozumek, E.A. Macha, Survey of failure criteria and parameters in mixed-mode fatigue crack growth, Materials science, 45, 2 (2009) 190-210.