Shape, Size and Distribution of Metal Particles Embedded in a Ceramic Matrix


Article Preview

The presented paper is a review of own work done on two systems of composites, Al2O3‑Ni and Al2O3-Fe. The previous own results of research into shape, size and distribution of the metal particles and spinel phase embedded in a ceramic matrix are referred to and new ones are presented. Metal particles as well as spinel can be distributed uniformly in a ceramic matrix or can form graded structures. Most often there are agglomerates of metal or spinel particles rather than separated particles embedded in ceramic grains. In composites the growing spinel forms a thick oval layer around a metal particle, however, separate spinel areas embedded in a ceramic matrix are noticed, too. Also, the characteristic “doughnut” shape of spinel is found. Since the metal and spinel phase influence the mechanical properties, the required properties of ceramic-metal composites can be tailored by changing the size, shape and distribution of the phases.



Solid State Phenomena (Volume 231)

Edited by:

Beata Dubiel and Tomasz Moskalewicz




K. Konopka "Shape, Size and Distribution of Metal Particles Embedded in a Ceramic Matrix", Solid State Phenomena, Vol. 231, pp. 57-63, 2015

Online since:

June 2015





* - Corresponding Author

[1] J.A. Yeomans, Ductile particle ceramic-matrix composites-scientific curiosities or engineering materials?, J. Eur. Ceram. Soc. 28 (2008) 1543-1550.

DOI: 10.1016/j.jeurceramsoc.2007.12.009

[2] B.D. Flinn, M. Ruhle, A.G. Evans, Toughening in composites of Al2O3 reinforced with Al, Acta Metall. Mater. 37 (1989) 3001-3006.

DOI: 10.1016/0001-6160(89)90336-2

[3] W.H. Tuan, H.H. Wu, T.J. Yang, The preparation of Al2O3/Ni composites by a powder coating technique, J. Mater. Sci. 30 (1995) 855-859.

DOI: 10.1007/bf01178417

[4] J.S. Moya, S. Lopez-Esteban, C. Pecharroman, The challenge of ceramic/metal microcomposites and nanocomposites, Prog. Mater. Sci. 52 (2007) 1017-1090.

[5] Z. He, J. Ma, G. E. B. Tan, Fabrication and characteristics of alumina-iron functionally graded materials, J. Alloy. Compd. 486 (2009) 815-818.

DOI: 10.1016/j.jallcom.2009.07.073

[6] K. Konopka, Novel ceramic-metal composites with metal phase from micro to nanosize, Solid State Phenom. 101-102 (2005) 139-142.

DOI: 10.4028/

[7] K. Konopka, Crack propagation in composites with ceramic matrix, Solid Mech. Appl. 135 (2005) 261-268.

[8] L.S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. Mc Meeking, A.G. Evans, On the toughness of brittle materials reinforced with a ductile phase, Acta Metall. Mater. 36 (1989) 845-953.

DOI: 10.1016/0001-6160(88)90149-6

[9] S. Schicker, T. Erny, D.E. Garcia, R. Janssen, N. Claussen, Microstructures and mechanical properties of Al-assisted sinterd Fe/Al2O3 cermets, J. Eur. Ceram. Soc. 19 (1999) 2455-2463.

DOI: 10.1016/s0955-2219(99)00107-7

[10] M. Lieberthal, W.D. Kaplan, Properties of Al2O3 nanocomposites reinforced with sub-micron Ni and NiAl2O4, Mater. Sci. Eng. A 302 (2001) 83-91.

DOI: 10.1016/s0921-5093(00)01358-7

[11] X. Sun, J. Yeomans, Inluence of particle size distribution on ductile phase toughening in brittle materials, J. Am. Ceram. Soc. 79 (1996) 562-564.

[12] T. Rodriguez-Surez, J.F. Bartolome, J.S. Moya, Mechanical and tribological properties of ceramic/metal composites: A review of phenomena spanning from the nanometer to the micrometer length scale, J. Eur. Ceram. Soc. 32 (2012) 3887-3898.

DOI: 10.1016/j.jeurceramsoc.2012.06.026

[13] K. Konopka, A. Miazga, J. Właszczuk, Fracture toughness of Al2O3-Ni composites with nickel aluminate spinel phase NiAl2O4, Composites 3 (2011) 197-201.

[14] M. Gizowska, K. Konopka, M. Szafran, Alumina matrix ceramic-nickel composites wet processing, Composites 3 (2011) 61-65.

[15] M. Gizowska, M. Szafran, K. Konopka Properties of water-based slurries for fabrication of ceramic-metal composites by slip casting method, Arch. Metall. Mater. 56 (2011) 1105- 1110.

DOI: 10.2478/v10172-011-0123-8

[16] A. Miazga, K. Konopka, M. Gizowska, M. Szafran, Preparation of Al2O3-Ni cermet composites by aqueous gelcasting, Powder Metall. Met. C+ 52 (2014) 567-571.

DOI: 10.1007/s11106-014-9561-y

[17] M. Szafran, K. Konopka, E. Bobryk, K.J. Kurzydłowski, Ceramic matrix composites with gradient concentration of metal particles, J. Eur. Ceram. Soc. 27 (2007) 651-654.

DOI: 10.1016/j.jeurceramsoc.2006.04.046

[18] P.H. Bolt, S.F. Labner, J.W. Geus, F.H.P.M. Habraken, Interfacial reaction of NiO and Al2O3 (1120) and polycrystalline α-Al2O3, Appl. Surf. Sci. 89 (1995) 339-349.

DOI: 10.1016/0169-4332(95)00049-6

[19] J. Zygmuntowicz, A. Mizga, K. Konopka, Morphology of Nikel aluminate spinel (NiAl2O4) form in the Al2O3-Ni composite system sintered in air, Composites Theory and Practice 14 (2014) 106-110.

[20] K. Konopka:, Nickel aluminate spinel (NiAl2O4) in Al2O3-Ni composites, Inżynieria Materiałowa 175( 2010) 457-459 (in Polish).

[21] K. Konopka, L. Lityńska-Dobrzyńska, J. Dutkiewicz, SEM and TEM characterization of NiAl2O4 spinel phase in Al2O3 matrix Ni composite, Solid State Phenom. 186 (2012) 222-225.

DOI: 10.4028/

[22] K. Konopka, L. Lityńska-Dobrzyńska, J. Dutkiewicz, SEM and TEM studies of NiAl2O4 spinel phase distribution in alumina matrix, Arch. Metall. Mater. 58 (2013) 501-504.

DOI: 10.2478/amm-2013-0026

[23] W.H. Tuan, M.C. Lin, W.H. Tzing, The coarsening behavior of duplex Al2O3/NiAl2O4 composites, Mater. Chem. Phys. 48 (1997) 156-159.

DOI: 10.1016/s0254-0584(97)80111-3

[24] M. Gizowska, M. Szafran, Ł. Wasilewski, K. Konopka, Density and Young modulus of Al2O3-Ni composites obtained via slip casting method, Composites 9 (2009) 390-395.

Fetching data from Crossref.
This may take some time to load.