Ab Initio Study of the Oxygen Effect on Magnetic Interactions within 3d Metal Nanowires on Vicinal Rh (553) Surface


Article Preview

We present ab initio study of the magnetic properties of monatomic 3d transition metal (Mn, Fe, Co, Ni) nanowires without and with oxygen atoms on vicinal Rh (553) surface. We considered different experimentally observed submonolayer quantities of oxygen atoms. It was found that monatomic 3d metal nanowires without oxygen are in magnetic states. Within oxidized metal nanowires oxygen atoms affect on the magnetic moments and magnetic interaction of metal atoms. This influence leads to reduced (in the case of Mn, Fe and Co atoms) or quenched (in the case of Ni atoms) magnetic moment for these metal atoms.



Solid State Phenomena (Volumes 233-234)

Edited by:

Nikolai Perov and Anna Semisalova




I. Kamynina et al., "Ab Initio Study of the Oxygen Effect on Magnetic Interactions within 3d Metal Nanowires on Vicinal Rh (553) Surface", Solid State Phenomena, Vols. 233-234, pp. 546-549, 2015

Online since:

July 2015




* - Corresponding Author

[1] K. Kuhnke, K. Kern, Vicinal metal surfaces as nanotemplates for the growth of low-dimensional structures, J. Phys. Condens. Matter 15 , S3311 (2003).

DOI: 10.1088/0953-8984/15/47/007

[2] A. Mugarza, J.E. Ortega, Electronic states at vicinal surfaces, J. Phys. Condens. Matter 15, S3281 (2003).

DOI: 10.1088/0953-8984/15/47/006

[3] F. J. Himpsel, J. E. Ortega, G. J. Mankey, and R. F. Willis, Magnetic nanostructures, Adv. Phys. 47, 511 (1998).

[4] P. Gambardella et al., One-dimensional metal chains on Pt vicinal surfaces, Phys. Rev. B 61, 2254 (2000).

[5] P. Gambardella et al., Ferromagnetism in one-dimensional monatomic metal chains, Nature 416, 301-304 (2002).

[6] R. Cheng, E. Ayieta, Ya. B. Losovyj, Electronic states of Fe nanostructures on Pt(997) surface, J. Vac. Sci. Technol. A 26 (4) (2008).

[7] J. Schoiswohl et al., Chemical Reactivity of Ni-Rh Nanowires, Phys. Rev. Lett. 97, 126102 (2006).

[8] C. Franchini et al., Tailor-made ultrathin manganese oxide nanostripes: magic widths, on Pd(1 1 N) terraces, J. Phys.: Condens. Matter 24, 042001 (2012).

DOI: 10.1088/0953-8984/24/4/042001

[9] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci., 6: 15, (1996).

DOI: 10.1016/0927-0256(96)00008-0

[10] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54: 11169, (1996).

DOI: 10.1103/physrevb.54.11169

[11] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple,  Phys. Rev. Lett., 77: 3865, (1996).

DOI: 10.1103/physrevlett.77.3865

[12] J. P. Perdew, K. Burke, and M. Ernzerhof, Erratum: Generalized gradient approximation made simple, Phys. Rev. Lett., 78: 1396, (1997).

DOI: 10.1103/physrevlett.78.1396

[13] H. J. Monkhorst and J. D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B 13, 5188 (1976).

DOI: 10.1103/physrevb.13.5188

[14] M. B. Stearns, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Vol. 19, Magnetic Properties of Metals, Subvolume a, 3d, 4d and 5d Elements, Alloys and Compounds, edited by H. P. J. Wijn, p.24 (1986).

DOI: 10.1007/b29710

Fetching data from Crossref.
This may take some time to load.