Magnetic Anisotropy of Co-Nanostructures Embedded in Matrices with Different Pores Size and Morphology


Article Preview

Composite materials with Co (P) particles embedded into pores of silica and track etched polycarbonate membranes were fabricated by an electroless reduction. The magnetic and structural properties of the composite materials are characterized by scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometer. The macroscopic and local magnetic anisotropy of the Co (P) particles electroless deposited in the pores of the polycarbonate membrane and silica is studied. The composite materials with linear pores exhibit uniaxial magnetic anisotropy. The easy axis lies along the Co (P) rods, the shape anisotropy dominates over the intrinsic crystalline anisotropy. Information on local anisotropy field and the grain size was obtained from investigation of approach to saturation magnetization law. The local anisotropy field for all the samples depends on P content. For Co (P) rods the local anisotropy value is also determined by nominal pore sizes. It was found that the investigated Co (P) rods is nanocrystalline. The effects of different pores morphology on the FMR-spectra characteristics are studied.



Solid State Phenomena (Volumes 233-234)

Edited by:

Nikolai Perov and Anna Semisalova




E. Denisova et al., "Magnetic Anisotropy of Co-Nanostructures Embedded in Matrices with Different Pores Size and Morphology", Solid State Phenomena, Vols. 233-234, pp. 583-586, 2015

Online since:

July 2015




* - Corresponding Author

[1] L. Piraux, S. Dubois, J. Duvail, K. Ounadjela, A. Fert, Arrays of nanowires of magnetic metals: Perpendicular GMR and magnetic properties, J. Magn. Magn. Mater. 175 (1997) 127–136.


[2] M. Darques, J. Spiegel, J. De la Torre Medina, I. Huynen, L. Piraux, Ferromagnetic nanowire-loaded membranes for microwave electronics, J. Magn. Magn. Mater. 321(2009) 2055–(2065).


[3] J. M. Garcı́a, A. Asenjo, J. Velázquez, D. Garcı́a, M. Vázquez, P. Aranda, E. Ruiz-Hitzky, Magnetic behavior of an array of cobalt nanowires, J. Appl. Phys. 85 (1999) 5480.


[4] P. Granitzer and K. Rumpf, Magnetic Nanoparticles Embedded in a Silicon Matrix, Materials. 4 (2011) 908–928.


[5] A. K. M. Bantu, J. Rivas, G. Zaragoza, M. A. López-Quintela, M. C. Blanco, Structure and magnetic properties of electrodeposited cobalt nanowires, J. Appl. Phys. 89 (2001) 3393-3396.

[6] Y. Henry, K. Ounadjela, L. Piraux, S. Dubois, J. -M. George, J. -L. Duvail, Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires, Eur. Phys. J. B, 20 (2001) 35–54.


[7] Z. Zhang, S. Dai, D. Blom, J. Shen, Synthesis of ordered metallic nanowires inside ordered mesoporous materials through electroless deposition, Chem. Mater. 14 (2002) 965–968.


[8] E. A. Denisova, L. A. Chekanova, R. S. Iskhakov, G. N. Bondarenko, Microstructure and magnetic properties of C/Co-P and Al2O3/Co-P composite particles prepared by electroless plating, J. Appl. Phys., 113 (2013)17A340.


[9] M. Darques, L. Piraux, A. Encinas, and at all, Electrochemical control and selection of the structural and magnetic properties of cobalt nanowires, Appl. Phys. Lett. 86 (2005) 072508.


[10] E. M. Chudnovsky, W. M. Saslow, and R. A. Serota, Ordering in ferromagnets with random anisotropy, Phys. Rev. B. 33 ( 1986) 251–261.


[11] R. S. Iskhakov and S. V Komogortsev, Magnetic Microstructure of Amorphous, Nanocrystalline, and Nanophase Ferromagnets, Phys. Met. Metallogr. 112 (2011) 666–681.


[12] T. Bitoh, A. Makino, A. Inoue, Origin of low coercivity of (Fe0. 75 B 0. 15Si0. 10)100−xNbx (x=1–4) glassy alloys, J. Appl. Phys. 99 (2006) 08F102.