Electrically Inactive Dopants in Heavily Doped As-Grown Czochralski Silicon


Article Preview

To determine the electrically inactive fraction of As or P in heavily doped as-grown Czochralski Si 4-point resistivity and SIMS measurements were carried out. No clear trend for the electrical inactive fraction was found with an increasing dopant concentration, though a mean electrical inactive fraction of 11.5% for As doping could be determined.Experimental results on a dopant-vacancy complex in as-grown Si are scarce, hence temperature-dependent positron annihilation lifetime spectroscopy (PALS) was carried out on several heavily As and P doped as-grown Si samples. The measured average positron annihilation lifetime τav is between 218 ps and 220 ps. No temperature dependent effect on τav could be observed. Therefore, it can be concluded that in the studied doping range the dopant-vacancy complexes do not exist. The reason for the inactivation of the dopant has to be found elsewhere. A possible explanation can be the formation of dopant precipitates.



Solid State Phenomena (Volume 242)

Edited by:

P. Pichler




L. Stockmeier et al., "Electrically Inactive Dopants in Heavily Doped As-Grown Czochralski Silicon", Solid State Phenomena, Vol. 242, pp. 10-14, 2016

Online since:

October 2015




* - Corresponding Author

[1] X. Zhang, X. Ma, C. Gao, T. Xu, J. Zhao, P. Dong, J. Vanhellemont, Physica Status Solidi C 11 (2014) (1), p.32–36.

[2] S.A. Harrison, T.F. Edgar, G.S. Hwang, Electrochemical and Solid-State Letters 9 (2006) (12), pp. G354.

[3] D. Nobili, S. Solmi, Physica Status Solidi C 2 (2005) (10), p.3681–3685.

[4] SEMI MF723-0307E, 2012: Practice for conversion between resistivity and dopant or carrier density for boron-doped, phosphorus-doped, and arsenic-doped silicon.

DOI: https://doi.org/10.1520/f0723-99

[5] M. Elsayed, R. Krause-Rehberg, B. Korff, S. Richter, H.S. Leipner, Journal of Applied Physics 113 (2013) (9), p.094902–94902.

DOI: https://doi.org/10.1063/1.4793791

[6] J. Gebauer, F. Rudolf, A. Polity, R. Krause-Rehberg, J. Martin, P. Becker, Applied Physics A 68 (1999), p.411–416.

[7] M.A. Berding, A. Sher, M. van Schilfgaarde, P.M. Rousseau, W.E. Spicer, Applied Physics Letters 72 (1998) (12), p.1492–1492.

DOI: https://doi.org/10.1063/1.121036

[8] P.M. Rousseau, P.B. Griffin, W.T. Fang, J.D. Plummer, Journal of Applied Physics 84 (1998) (7), p.3593–3593.

[9] K. Saarinen, V. Ranki, Journal of Physics: Condensed Matter 15 (2003), pp. S2791-S2801.

[10] U. Myler, Journal of Vacuum Science & Technology B 15 (1997) (3), p.757–757.

[11] K. Saarinen, J. Nissilä, H. Kauppinen, M. Hakala, M. Puska, P. Hautojärvi, C. Corbel, Physical Review Letters 82 (1999) (9), p.1883–1886.

DOI: https://doi.org/10.1103/physrevlett.82.1883

[12] Y. Nakabayashi, H. Osman, K. Yokota, K. Toyonaga, S. Matsumoto, J. Murota, K. Wada, T. Abe, Materials Science in Semiconductor Processing 6 (2003) (1-3), p.15–19.

DOI: https://doi.org/10.1016/s1369-8001(03)00066-0

[13] K. Sueoka, E. Kamiyama, J. Vanhellemont, Journal of Applied Physics 114 (2013) (15), p.153510–153510.

[14] R.N. Kyutt, I.L. Shulpina, G.N. Mosina, V.V. Ratnikov, L.M. Sorokin, M.P. Scheglov, S.S. Ruvimov, J. Kearns, V. Todt, Journal of Physics D: Applied Physics 38 (2005) (10A), pp. A111–A116.

DOI: https://doi.org/10.1088/0022-3727/38/10a/021