Low Temperature Internal Gettering of Bulk Defects in Silicon Photovoltaic Materials


Article Preview

Multicrystalline silicon (mc-Si) substrates are widely used for photovoltaic cells. The minority carrier lifetime in mc-Si is affected by recombination associated with metallic impurities in many forms, such as point-like defects, precipitates and bound to or precipitated at structural defects such as dislocations. We have studied the effect of low temperature annealing on the lifetime and bulk iron concentration in as-received mc-Si wafers from different locations within a block. Lifetime measurements are made using a temporary iodine-ethanol surface passivation technique to minimize the occurrence of bulk hydrogenation which often occurs from dielectric films. In good wafers from the middle of the block the lifetime is reduced by annealing at 400 °C and 500 °C in a way which does not correlate with changes in bulk iron concentration. Lifetime improvements occur in relatively poor samples from the top and bottom of the block annealed at 300 °C, and also in samples from the bottom annealed at 400 °C. The improvement in bottom wafers correlates with iron loss from the bulk. Our work shows that under some conditions the lifetime in relatively poor as-grown wafers can be improved by low temperature internal gettering.



Solid State Phenomena (Volume 242)

Edited by:

P. Pichler




M. Al-Amin and J.D. Murphy, "Low Temperature Internal Gettering of Bulk Defects in Silicon Photovoltaic Materials", Solid State Phenomena, Vol. 242, pp. 109-119, 2016

Online since:

October 2015


[1] K. Bothe, R. Krain, R. Falster, R. Sinton, Determination of the bulk lifetime of bare multicrystalline silicon wafers, Progress in Photovoltaics: Research and Applications 18, 204 (2010), doi: 10. 1002/pip. 975.

DOI: https://doi.org/10.1002/pip.975

[2] T. U. Nærland, L. Arnberg, A. Holt, Origin of the low carrier lifetime edge zone in multicrystalline PV silicon, Progress in Photovoltaics: Research and Applications 17, 289 (2009), doi: 10. 1002/pip. 876.

DOI: https://doi.org/10.1002/pip.876

[3] S. P. Phang, D. Macdonald, Direct comparison of boron, phosphorus, and aluminum gettering of iron in crystalline silicon, Journal of Applied Physics 109, 073521 (2011), doi: 10. 1063/1. 3569890.

DOI: https://doi.org/10.1063/1.3569890

[4] M. Seibt, R. Khalil, V. Kveder, W. Schröter, Electronic states at dislocations and metal silicide precipitates in crystalline silicon and their role in solar cell materials, Applied Physics A 96, 235 (2009), doi: 10. 1007/s00339-008-5027-8.

DOI: https://doi.org/10.1007/s00339-008-5027-8

[5] J. D. Murphy, K. Bothe, V. V. Voronkov, R. J. Falster, On the mechanism of recombination at oxide precipitates in silicon, Applied Physics Letters 102, 042105 (2013), doi: 10. 1063/1. 4789858.

DOI: https://doi.org/10.1063/1.4789858

[6] J. Hofstetter, D. P. Fenning, D. M. Powell, A. E. Morishige, T. Buonassisi, Iron management in multicrystalline silicon through predictive simulation: Point defects, precipitates, and structural defect interactions, Solid State Phenomena 205-206, 15 (2014).

DOI: https://doi.org/10.4028/www.scientific.net/ssp.205-206.15

[7] B. Ziebarth, M. Mrovec, C. Elsässer, P. Gumbsch, Interstitial iron impurities at grain boundaries in silicon: A first-principles study, Physical Review B 91, 035309 (2015), doi: 10. 1103/PhysRevB. 91. 035309.

DOI: https://doi.org/10.1103/physrevb.91.035309

[8] R. Falster, Process for contamination removal and minority carrier lifetime improvement in silicon, US Patent No 5, 272, 119 (1993).

[9] K. J. Fraser, R. J. Falster, P. R. Wilshaw, Cathodoluminescence assessment of annealed silicon and a novel technique for estimating minority carrier lifetime in silicon, Material Science and Engineering B 159–160, 194 (2009).

DOI: https://doi.org/10.1016/j.mseb.2008.05.006

[10] J. D. Murphy, R. J. Falster, The relaxation behaviour of supersaturated iron in single-crystal silicon at 500 to 750°C, Journal of Applied Physics 112, 113506 (2012), doi: 10. 1063/1. 4767378.

DOI: https://doi.org/10.1063/1.4767378

[11] R. Krain, S. Herlufsen, J. Schmidt, Internal gettering of iron in multicrystalline silicon at low temperature, Applied Physics Letters 93, 152108 (2008), doi: 10. 1063/1. 2987521.

DOI: https://doi.org/10.1063/1.2987521

[12] M. D. Pickett, T. Buonassisi, Iron point defect reduction in multicrystalline silicon solar cells, Applied Physics Letters 92, 122103 (2008), doi: 10. 1063/1. 2898204.

DOI: https://doi.org/10.1063/1.2898204

[13] M. Rinio, A. Yodyunyong, S. Keipert-Colberg, Y. P. B. Mouafi, D. Borchert, A. Montesdeoca-Santana, Improvement of multicrystalline silicon solar cells by a low temperature anneal after emitter diffusion, Progress in Photovoltaics: Research and Applications 19, 165 (2011).

DOI: https://doi.org/10.1002/pip.1002

[14] A. Y. Liu, D. Macdonald, Precipitation of iron in multicrystalline silicon during annealing, Journal of Applied Physics 115, 114901 (2014), doi: 10. 1063/1. 4868587.

DOI: https://doi.org/10.1063/1.4868587

[15] Y. Boulfrad, A. Haarahiltunen, H. Savin, E. J. Øvrelid, L. Arnberg, Enhanced performance in the deteriorated area of multicrystalline silicon wafers by internal gettering, Progress in Photovoltaics: Research and Applications 23, 30 (2015).

DOI: https://doi.org/10.1002/pip.2391

[16] P. Karzel, P. Frey, S. Fritz, G. Hahn, Influence of hydrogen on interstitial iron concentration in multicrystalline silicon during annealing steps, Journal of Applied Physics 113, 114903 (2013), doi: 10. 1063/1. 4794852.

DOI: https://doi.org/10.1063/1.4794852

[17] A. Liu, C. Sun, D. Macdonald, Hydrogen passivation of interstitial iron in boron-doped multicrystalline silicon during annealing, Journal of Applied Physics 116, 194902 (2014), doi: 10. 1063/1. 4901831.

DOI: https://doi.org/10.1063/1.4901831

[18] R. A. Sinton, A. Cuevas, Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data, Applied Physics Letters 69, 2510 (1996).

DOI: https://doi.org/10.1063/1.117723

[19] J. D. Murphy, K. Bothe, M. Olmo, V. V. Voronkov, R. J. Falster, The effect of oxide precipitates on minority carrier lifetime in p-type silicon, Journal of Applied Physics 110, 053713 (2011), doi: 10. 1063/1. 3632067.

DOI: https://doi.org/10.1063/1.3632067

[20] J. D. Murphy, R. J. Falster, Contamination of silicon by iron at temperatures below 800°C, Physica Status Solidi Rapid Research Letters 5, 370 (2011), doi: 10. 1002/pssr. 201105388.

DOI: https://doi.org/10.1002/pssr.201105388

[21] A. L. Blum, J. S. Swirhun, R. A. Sinton, F. Yan, S. Herasimenka, T. Roth, K. Lauer, J. Haunschild, B. Lim, K. Bothe, Z. Hameiri, B. Seipel, R. Xiong, M. Dhamrin, J. D. Murphy, Inter-laboratory study of eddy-current measurement of excess-carrier recombination lifetime, IEEE Journal of Photovoltaics 4, 525 (2014).

DOI: https://doi.org/10.1109/jphotov.2013.2284375

Fetching data from Crossref.
This may take some time to load.