Electronic Properties of Dislocations

Abstract:

Article Preview

Dislocations are one-dimensional crystal defects. Their dimension characterize the defects as nanostructures (nanowires). Measurements on defined dislocation arrays proved numerous exceptional electronic properties. A model of dislocations as quantum wires is proposed. The formation of the quantum wire is a consequence of the high strain level on the dislocation core modi-fying locally the band structure.

Info:

Periodical:

Solid State Phenomena (Volume 242)

Edited by:

P. Pichler

Pages:

141-146

Citation:

M. Reiche et al., "Electronic Properties of Dislocations", Solid State Phenomena, Vol. 242, pp. 141-146, 2016

Online since:

October 2015

Export:

Price:

$41.00

* - Corresponding Author

[1] C.H. Lin, R. Kambhampati, R.J. Miller, T.B. Hook, A. Bryant, W. Haensch, P. Oldiges, I. Lauer, T. Yamashita, V. Basker, T. Standaert, K. Rim, E. Loeobandung, H. Bu, and M. Khare, 2012 Symposium on VLSI Technology, Digest, 15 (2012).

DOI: https://doi.org/10.1109/vlsit.2012.6242438

[2] E. Prati and T. Shinada, IEDM Techn. Digest, 1. 2. 1. (2014).

[3] F. Calzecchi, P. Gondi, and F. Schintu, Nuovo Cimento 58B, 376 (1968).

[4] V.G. Eremenko, V.I. Nikitenko, and A.B. Yakimov, Sov. Phys. - JETP 40, 570 (1975).

[5] M. Reiche, M. Kittler, W. Erfurth, E. Pippel, K. Sklarek, H. Blumtritt, A. Haehnel, and H. Uebensee, J. Appl. Phys. 115, 194303 (2014).

DOI: https://doi.org/10.1063/1.4876265

[6] M. Reiche, M. Kittler, D. Buca, A. Hähnel, Q. -T. Zhao, S. Mantl, and U. Gösele, Jpn. J. Appl. Phys. 49, 04DJ02 (2010).

DOI: https://doi.org/10.1143/jjap.49.04dj02

[7] M. Reiche, M. Kittler, H. Uebensee, E. Pippel, and S. Hopfe, Adv. Nano Research 2 (1), 1 (2014).

[8] M. Reiche, M. Kittler, E. Pippel, W. Erfurth, A. Haehnel, and H. Uebensee, Phys. Stat. Sol. (c), in press (2015).

[9] M. Reiche, M. Kittler, M. Krause, and H. Übensee, Phys. Stat. Sol. (c) 10, 40 (2013).

[10] M. Reiche, M. Kittler, M. Schmelz, R. Stolz, H. Uebensee, M. Kehrmann, and T. Ortlepp, J. Phys. Conf. Ser. 568, 052024 (2014).

DOI: https://doi.org/10.1088/1742-6596/568/5/052024

[11] V. Kveder and M. Kittler, Mat. Sci. Forum 590, 29 (2008).

[12] R. Labusch and W. Schröter, in Dislocations in Solids, F.R.N. Nabarro, Editors, Vol. 5, p.127, North-Holland, Amsterdam (1980).

[13] E. Abrahams, S.V. Kravchenko, and M.P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).

[14] M. Couillard, G. Radtke, and G.A. Botton, Phil. Mag. 93, 250 (2013).

[15] S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, IEEE Trans. Electron. Dev. 54, 2137 (2007).

DOI: https://doi.org/10.1109/ted.2007.902871

[16] J. -M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B 57, 6493 (1998).

[17] M.V. Fischetti, Z. Ren, P.M. Solomon, M. Yang, and K. Rim, J. Appl. Phys. 94 (2), 1079 (2003).

[18] V. Sverdlov, Strain-induced effects in advanced MOSFETs, Springer, Wien (2011).

[19] S.Z. Karazhanov, A. Davletova, and A. Ulyashin, J. Appl. Phys. 104, 024501 (2008).

[20] W. Lu, J. Xiang, B.P. Timko, Y. Wu, and C.M. Lieber, PNAS 102, 10046 (2005).

[21] M. Reiche, M. Kittler, H. Uebensee, E. Pippel, and W. Erfurth, ECS Trans. 64(11), 267 (2014).

DOI: https://doi.org/10.1149/06411.0267ecst

[22] A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najatian, A. Majumdar, and P. Yang, Nature, 163 (2008).

[23] N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).

DOI: https://doi.org/10.1088/0957-4484/24/20/205402