Synthesis and Characterizations of Titanium Tungstophosphate Nanoparticles for Heavy Metal Ions Removal

Abstract:

Article Preview

Ionic exchange of multi-components titanium tungstophosphate nanoparticles (TiWP-NPs) were prepared using sol-gel reaction of titanium isoperoxide and tungestophosphoric acid (TPA) in presence of CTAB surfactant. The X-ray, BET and TEM characterizations showed that the nanoparticles exhibit the characteristic structure of titanium tungstophosphate and a BET surface area of 74 ± 3 m2/g was achieved. The TPA has shown an effect on the self-assembly process and maintains the TPA content to minimum would be beneficial for obtaining higher surface area of TiWP nanoparticles. Metal ions adsorption of Cu(II), Pb(II) or Cd(II) using the resulting titanium tungstophosphate nanparticles materials is investigated and up to 95% removal percentage was achieved. Using this method, nanoparticles of ionic exchange titanium tungstophosphate can be synthesized in the form of powder and amenable to mass production.

Info:

Periodical:

Solid State Phenomena (Volume 257)

Edited by:

Juan Bartolomé, Jose Ignacio Arnaudas, Larry R. Falvello

Pages:

187-192

DOI:

10.4028/www.scientific.net/SSP.257.187

Citation:

M. A. Ghanem et al., "Synthesis and Characterizations of Titanium Tungstophosphate Nanoparticles for Heavy Metal Ions Removal", Solid State Phenomena, Vol. 257, pp. 187-192, 2017

Online since:

October 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] X. Li, J. He, ACS Appl. Mater. Interfaces, 5 (2013) 5282–5290.

[2] Y. Gao, Tang Z., Design and application of inorganic nanoparticle superstructures: current status and future challenges, Small 7 (2011) 2133-46.

DOI: 10.1002/smll.201100474

[3] J.N. Freitas, A.S. Gonçalves, A.F. Nogueira, Comprehensive review in the application of chalcogenide nanoparticles in polymer solar cells, Nanoscale 6 (2014) 6371-6397.

DOI: 10.1039/c4nr00868e

[4] M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: A review, J. Hazardous Mater. 211–212 (2012) 317–331.

DOI: 10.1016/j.jhazmat.2011.10.016

[5] V. Fuchs, L. Méndez, M. Blanco, L. Pizzio, Mesoporous titania directly modified with tungstophosphoric acid: synthesis, characterization and catalytic evaluation. Appl. Cat. A: Gen. 358 (2009) 73-78.

DOI: 10.1016/j.apcata.2009.01.040

[6] M.N. Blanco, L.R. Pizzio, Properties of mesoporous tungstosilicic acid/titania composites prepared by sol–gel method, App. Surf. Sci. 256 (2010) 3546–3553.

DOI: 10.1016/j.apsusc.2009.12.105

[7] Y. Konishi, T. Nomura, K. Mizoe, K. Nakata, Preparation of Cobalt Ferrite Nanoparticles by Hydrolysis of Cobalt-Iron (III) Carboxylate Dissolved in Organic Solvent, Materials Transactions, 45 (2004) 81-85.

DOI: 10.2320/matertrans.45.81

[8] A. Walcarius, Mesoporous materials and electrochemistry, Chem. Soc. Rev. 42 (2013) 4098-4140.

[9] J. Choi, A. Ide, Y.B. Truong, I.L. Kyratzis, R.A. Caruso, High surface area mesoporous titanium–zirconium oxide nanofibrous web: a heavy metal ion adsorbent, J. Mater. Chem. A. 1 (2013) 5847–5853.

DOI: 10.1039/c3ta00030c

[10] R. Zhang, A.A. Elzatahry, S.S. Al-Deyabb, D. Zhao, Mesoporous titania: From synthesis to application, Nano Today. 7 (2012) 344-366.

DOI: 10.1016/j.nantod.2012.06.012

[11] G. Kickelbick, Nanoparticles and Composites, D. Levy, M. Zayat (Eds. ), The Sol-Gel Handbook: Synthesis, Characterization, and Applications, Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 2015, pp.227-244.

[12] C.A.C. Escobedo, J. Munoz-Saldana, D.J. Vigueras, F.J.E. Beltran, Preparation of size controlled nanometric spheres of colloidal silica for synthetic opal manufacture, Mater. Sci. Forum 509 (2006) 187–192.

DOI: 10.4028/www.scientific.net/msf.509.187

[13] J. Ba, D.F. Rohlfing, A. Feldhoff, T. Brezesinski, I. Djerdj, M. Wark, M. Niederberger, Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration, Chem. Mater. 18 (2006).

DOI: 10.1021/cm060548q

[14] L. Zhang, I. Djerdj, M. Cao, M. Antonietti, M. Niederberger, Nonaqueous sol–gel synthesis of a nanocrystalline InNbO4 visible-light photocatalyst, Adv. Mater. 19 (2007) 2083–(2086).

DOI: 10.1002/adma.200700027

[15] N. Venkatachalam, M. Palanichamy, V. Murugesan, J. Mol. Catal A. 273 (2007) 177.

[16] C. Wang, D. Chen, X. Jiao, Lyotropic liquid crystal directed synthesis of nanostructured materials, Sci. Technol. Adv. Mater. 10 (2009) 23001-11.

[17] A. Vinu, Mesoporous non-siliceous materials and their functions, S. Ernst (Edr), Advances in Nanoporous Materials, vol 1, Elsevier, Amsterdam, Netherlands, 2009, pp.151-236.

DOI: 10.1016/s1878-7959(09)00103-0

[18] Y. Yue, Z. Gao, Synthesis of mesoporous TiO2 with a crystalline framework, Chem. Comm. (2000) 1755-1756.

[19] S. W. Boettcher, J. Fan, C-K Tsung, Q. Shi, G. Stuky, Harnessing the Sol–Gel Process for the Assembly of Non-Silicate Mesostructured Oxide Materials, Acc. Chem. Res. 40 (2007) 784–792.

DOI: 10.1021/ar6000389

[20] N. Phonthammachai, T. Chairassameewong, E. Gulari, A.M. Jamieson, S. Wongkasemjit, Structural and rheological aspect of mesoporous nano-crystalline TiO2 synthesized via sol–gel process, Microporous and Mesoporous Mater. 66 (2003) 261–271.

DOI: 10.1016/j.micromeso.2003.09.017

In order to see related information, you need to Login.